
SZwWMHMI
iiiiii ' 4iSilli

The Software Magazine'
Volume II, No. 6
November 1981

Special Feature

Ten New Volumes From CPMUG”!

UrEUliES*
Editor-in-Chief: Edward H. Currie
Managing Editor: Jane V. Mellin
Production Assistant: K. Gartner
Administrative Assistant: Susan M. Sawyer

Volume II No. 6 November

Contents Product Status Reports
Notes on dBase 11™ 20
On CP/M 2.25a For the TRS-80 Model II™ 20
New Versions 32
New Products 34
Bugs 35
Using The Apple™ Corvus Module

with The Mirror Backup 36
BASCOM-Compiled Files Under CDOS 36
Operating Systems and Hard Disk Modules 43
Version List 45

Software Notes

Opinion
Editorial Comments

by Edward H. Currie 2
The Pipeline

by Carl Warren 3

Features
8080 Assembly Language Tutorial - Part 3:
Terminology and Architecture

by Ward Christensen 5
Custom I/O Routines for PIP

by Michael Karas 11
After The Game

by Stephen Walton 19
A Review of Pascal MT +™

by James Gagne 21

The CP/M Users Group

CPMUG™ News 24
Ordering from CPMUG 24
CPMUG Catalogues: Volumes 55, 56, 57, 58, 59,

60, 61, 62, 63, and 64 25

Tips and Techniques 16
Still More Random Numbers 30
T/MAKER II Tips 38
More Software Tricks

by Kelly Smith 40

Miscellaneous
Change of Address 4
KIB-BITZ™ 15
Tip Contest 18
Notice 31
Back Issues 37
Review 39
Coming Soon 39

Copyright © 1981, by Lifelines Publishing Corporation. No portion of this publication may be
reproduced without the written permission of the publisher.

Lifelines, Volume II, Number 6. Published monthly by Lifelines Publishing Corporation, 1651
Third Ave., New York, N.Y. 10028. Telephone: (212) 722-1700. The single copy price is $2.50
domestically, including the U.S., Canada, and Mexico. The single issue price for copies sent to
all other countries is $3.60. A one year’s (12 issues) subscription is priced at $18.00, when
destined for the U.S., Canada or Mexico, $40 when destined for any other country. All checks
should be made payable to Lifelines Publishing Corporation. Foreign checks must be in U.S.
dollars, drawn on a U.S. bank; checks, money orders, VISA, and MasterCard are acceptable. All
orders must be pre-paid. Please send all correspondence to the Publisher at the above address.
Postmaster, please send change of address to Lifelines Publishing Corporation, 1651 Third
Ave., New York, N.Y. 10028. Application to mail at second class postage pending at New York,
N.Y.

The Software Magazine is a trademark of Lifelines Publishing Corp.
CBBS is a trademark of Ward Christensen and Randy Suess.
SB-80 and SB-86 aretrademarks of Lifeboat Associates.
MAGSAM and PRISM are trademarks of Micro Applications Group.
KIB-BITZ is a trademark of Bess Garber and Seton Kasmir.
“After the Game’’ is copyrighted by Stephen Walton with all rights reserved.
Boss is a trademark of Balcones Computer Corp.
WordStar is a trademark of MicroPro International Corp.
CP/M-80 and CP/M are registered trademarks of Digital Research, Inc. MP/M and PL/l-80 are
trademarks of Digital Research, Inc. The CP/M Users Group is not affiliated with Digital Re-
search, Inc.
MS-DOS, MBASIC, XENIX, and Microsoft are trademarks of Microsoft Consumer Products.
Z80 is a trademark of Zilog Corporation. Pascal MT is a trademark of MT Microsystems.
TRS-80 Model II is a trademark of Tandy Corp. dBase II is a trademark of Ashton-Tate.
UNIX is a trademark of Bell Laboratories.

Editorial Comments
A Call for Standards

Last month we touched briefly on the
historical aspects of what we have
chosen to call the “Age of Altair". This
month the topic to be reviewed is that of
"Standards" in the microcomputer
world.

The first microcomputer standard
began as the result of H. Edward
Roberts' definition of the Altair bus.
This bus, which was never copyrighted,
rapidly gained widespread use and soon
after, a major campaign was launched
by Carl Warren and others to rename it
with the generic, non-proprietary name,
S100. This effort was based largely on
the belief that the name would place the
design securely in the public domain and
that ultimately it would evolve to a true
industry standard. Soon thereafter,
through the efforts of George Morrow,
Mark Garetz, Steve Adelman and
others, the process was started to
develop an IEEE specification for the
S100 bus and today the proposals are
about to be adopted as a fully sanction-
ed standard.

The world of microcomputer software
has not experienced anything quite like
its hardware counterpart but rather has
tended for the most part to evolve de
facto standards. In the case of BASIC,
Microsoft's MBASIC has become the
"standard" by which other BASICs were
to be measured in speed and features.
Standards for PASCAL were establish-
ed by Jensen and Wirth's classic treatise,
C by the work of Kemighan and Rit-
chie, COBOL by GSA, etc. A number
of emulations of Bell Lab's UNIX
operating system are now emerging in
an attempt to establish standards by im-
itation.

Particularly interesting has been the
evolution of "standards" in the realm of
eight bit operating systems. CP/M-80®
compatible operating systems have only
recently developed the widespread title
of de facto standards and then largely
because of the large number of hard-
ware configurations supported, and the
many applications packages available in
a wide range of media formats which
"plug-into" this environment. And note
that it has not been by virtue of these

Authors of other candidates are invited
to place in the public domain functional
specifications of their operating systems
so that compatible and competitive pro-
ducts can also be considered. Any
CP/M-86™ compatible range of
operating systems might be at risk of
claims of infringement of trade secrets
and copyrights.

It is important to avoid a repetition of
what happened with CP/M-80. As you
recall, the world had quickly adopted
the public domain version 1.0 of
CP/M-80 as evidenced by the design of
compatible operating systems such as
those for Cromemco, Sanyo, Mostek,
Infosoft, et al. Digital Research has
however chosen to develop later ver-
sions in directions that have effectively
destroyed this standardization, by
declaring such changes as trade secrets
or copyrighted. It is a sad commentary
that users of CDOS, IMDOS, etc. are
now confronted with a myriad of in-
compatibilities imposed by DR's at-
titude against shared standards.

SB-86, OASIS, CP/M-86 and others
should all be considered candidates in
whole or part in arriving at a future true
standard in order to insure no recur-
rence of the confusion now existing in
the CP/M-80 world.

Lifelines calls upon the readership and
the industry to support a major move-
ment to provide sufficient definition and
scope to assure that industry standards
emerge rapidly. We are anxious to sup-
port any and all efforts of this type and
actively encourage you to make known
your ideas and proposals. The benefits
are many and obvious, not the least of
which is the mutual advantage for all in
establishing rigorous standards to
assure applications of a rich and stable
environment in this second generation
of personal computers.

Therefore we encourage you to forward
your questions, suggestions and pro-
posals regarding sixteen bit operating
systems such as SB-86 and their exten-
sions to me at Lifelines.

This is a unique opportunity to in-
fluence the future of the industry and
serves well the interest of all. We look
forward to your comments.

Edward H. Currie

operating systems' sophistication but
rather by lack of competition that they
have achieved this popularity.
Now we find ourselves confronted by a
unique situation. Just as IBM's com-
munication, disk formats and other
standards rapidly came into worldwide
use as industry standards, SB-86™(i.e.
Microsoft's MS-DOS™) is also showing
significant signs of worldwide accep-
tance as a de facto standard. Particular-
ly interesting was IBM's decision to
establish this previously little known
operating system as their standard. Cer-
tainly Microsoft's well earned reputa-
tion for quality as reflected by
MBASIC, BASCOM, etc. were con-
tributing factors in this decision. But
perhaps most important to the industry
as a whole is IBM's decision to license a
non-exclusive operating system allow-
ing other manufacturers to follow.
SB-86 has a number of highly important
features which we shall discuss in later
issues but it is clearly a technically
superior operating system. Although
IBM is licensed to distribute this O.S.,
Microsoft and Lifeboat are actively
developing it and its market, to insure its
broader popularity.

OEM's are showing renewed interest in
the 8086 and many are preparing
and/or revisiting plans to produce
8088/8086 environments as their next
generation hardware. AMD's recent
reversal might be the death blow to the
Z8000. Authors are scrambling to
gather the languages, tools and hard-
ware required to move their applica-
tions into the SB-86 world and the press
is hard at work preparing a variety of
articles, new product announcements,
review articles as well as new publica-
tions targeted for this market.

A crucial component of this rapid
evolution is the proposal, adoption and
implementation of extensions to SB-86
which brings us to perhaps one of the
most exciting aspects of this new
operating system.

SB-86 is an excellent candidate for a
public s tandard for a sixteen bit
operating system for desktop computers
and should be give serious consideration
along with other potential candidates.

2 Lifelines, November 1981

The Pipeline by Carl Warren

Terminals offer many features

Terminals are key data entry periph-
eral devices to almost any system you
can name. What to buy and why can
be confusing, especially if you're un-
sure of what's available and of the dif-
ferent categories each terminal falls
into.

A display terminal can be categorized
under three headings: dumb, smart,
and intelligent. The first category of
terminals comprises those which pro-
vide a simple minded input device to a
system much like a teletype. And in
fact are frequently referred to as glass
teletypes. The second category
(smart) consists of those terminals
that provide editing capabilities of
line and character insert, plus the
ability to delete. The third category of
intelligent terminals includes those
which give you the ability to program
them; these are in fact stand-alone
desktop computers.

Currently, there are approximately
150 different so-called dumb terminals
available, ranging in price from $375
to $995, depending on screen size and
functional capability. The smart ter-
minal segment is similarly glutted
with more than 120 possible choices.
The intelligent terminal, though, is a
different animal entirely, and only
about 50 vendors offer products that
fall into this category.

Although there is a great deal of in-
terest in the low-end, under $1000,
terminal, the intelligent terminal ap-
pears to be the best choice for certain
applications, of which distributed
processing leads the pack. But be
aware, intelligent terminals don't
come cheaply and represent a major
investment - with prices ranging from
as little as $2,000 to $8,000, again
depending on capability.

In general the intelligent terminal of-
fers such features as: full screen
displays of 80x24 on a 15-in. screen,
numeric keypads, and function keys,
employment of dual processors (such
as the Z-80 found in the Heath /Zenith

Z-89, for example). In addition, 16-bit
processors are just starting to find
their way into terminals like Piiceon's
PM-2010; it employs an Intel 8086.

Moreover, you can expect to find in-
telligent units that support up to 64K
bytes of user memory and support a
full range of system languages and a
variety of operating systems. Not so
surprising is that Digital Research's
CP/M operating system appears to be
the prime choice among manufactur-
ers.

The problem that seems to occur with
intelligent terminals, is whether the
device is a terminal or a computer.
Most vendors believe that the defini-
tion is broad enough to cover both
fields. The Z-89, for example, is in
most cases employed as a stand-alone
desktop computer. But the unit serves
as an excellent front end to larger mini
or mainframe systems in a distributed
environment.

Most observers expect the next gener-
ation of intelligent terminals to be
almost minicomputer-like systems
with 16-bit processors, Winchester
disk drives, and either a floppy or
tape serving as a backup device. In ad-
dition, current outlooks call for the
employment of intelligent I/O using
Intel's 8049, for example, to take the
burden off the main processor.

Yes, color is making its way into the
intelligent world also. Intelligent
Systems Corp, possibly leads the pack
with desktop color terminals, and
Radio Shack is making a major dent in
the market with the TRS-80 Color
Computer. This latter system offers
16-bit capability in an 8-bit package.
Radio Shack is carrying its offering
forward by including along with the
tiny machine: a disk drive, color plot-
ter and high-resolution software pack-
ages with animation capability.

For those applications which don't re-
quire a lot of local intelligence, but
need screen handling capability,
you'd do well to consider taking a
look at the so-called smart or editing

terminals. These terminals are priced
in the $850 to $995 price range and
provide a number of capabilities for
handling screen data in concert with
an application package like Micro-
Pro's WordStar, for example. Typi-
cally these terminals offer 80x24
screen formats, numeric keypads and
function keys. What's missing are
large local memories; a one or two
page buffer is usually included, and
disk functions. Some of the terminals
that fall in this class and bear looking
at include: TEC's models 530, and 560
priced at $995, Televideo's Model
TVI-912 and TVI-920 carry prices tags
of $845 and $995 sport 12-in. diagonal
screens and with 1920 character dis-
play. Micro-term is in there with the
ACT series; prices range from $675 to
$995.

Virtually all the editing terminals pro-
vide similar characteristics of insert,
delete, scroll, and highlighting. What
confuses the issue, however, is the im-
plementation of control and escape
definitions. This latter problem has
caused major implementation difficul-
ties for companies like Organic Soft-
ware, Sorcim and others who make
generalized packages. According to
Sorcim's Richard Frank, developing
an install portion of a program takes
as much time as the mainline coding,
due to the different definitions.

The problem seems to center around
the market pressures that cause ter-
minal manufacturers to be forced into
offering more bells and whistles. And
one method of doing so is providing
functions using escape and control
codes that they define themselves
rather than following accepted ANSI
standards.

Interestingly, however, this may be
changing, according to various in-
dustry observers. Many believe that
because of the necessity of providing
compatibility to a host of systems,
and of operating both in the distrib-
uted and networking world, terminal
manufacturers will have to begin pro-
viding industry compatibility in order
to survive.

(continued next page)
3Lifelines, Volume II, Number 6

Micro-term and Ontel, to name a few,
offer the 132 columns and range in
price from $1300 to $6000. The cost
difference is dependant on how much
intelligence is built into the machine.

Future enhancements are most likely
going to be in the form of employing a
greater number of and more power
microprocessors in the terminal. In
addition, expect color to begin sup-
planting monochrome displays even
in the low-cost (under $1000) area.
Already Intelligent Systems is prepar-
ing to offer a very smart color ter-
minal for under $1500 by year's end.

Other enhancements to come will
most likely include built-in transduc-
ers for connecting to Ethernet type
networks, if not full node capability.
Expect also to find a complement of
serial interfaces from RS232C to
RS449, and terminals that will offer
transfer rates approaching iMbits/sec
by mid '82.

Cost may be the most exciting news
item of '82 since it appears terminal
manufacturers are looking to reduce
costs of even the most intelligent ter-
minal to the under $1500 range.

video. It's expected, that by year's end
a number of terminal manufacturers
will be offering communications capa-
bility, ranging from 300 baud Bell 103
compatible units to Bell 212A devices,
and providing both direct connect
functionality and acoustic coupled
options.

With the growing trend toward offer-
ing terminals with a host of "smarts"
has come the necessity of including a
variety of software features imple-
mented in firmware. The IBM Per-
sonal Computer may be the first in-
telligent terminal system to be offer-
ing a number of user selectable char-
acter sets, as well as the necessary
hooks for SNA, and X.25 communi-
cation protocols. These features al-
ready available in the system, but not
reported, are expected to play an im-
portant role in future software en-
hancements coming from the giant
computer maker.

Further enhancing both intelligent and
smart terminals are facilities to pro-
vide 132 columns on the screen and as
many as 66 lines. Currently, word
processing systems that provide full
page attributes call for rotating the
screen to be vertical. Terminals from
Datagraphix, Data General, Direct,

Further muddying the terminal
waters, are the introductions of small
portable terminals. Products such as
Novation's Infone, and Sony's termi-
nal design. These terminals fall into
the intelligent category since they of-
fer storage, editing, and communica-
tions capability. But they aren't ex-
pected to impact the systems world
because they are designed to be car-
ried in attache cases for use anywhere.

Although these small portable devices
are just now beginning to show up,
expect to see by NCC next year a host
of products from a variety of domestic
and foreign manufacturers. It's ex-
pected that you'll be able to see a full
range of terminals from Epson Amer-
ica including a flat screen display, and
similar products from Sinclair, Sony
and Hitachi. Reportedly, a number of
15-in. diagonal flat screen monitors
have been shown in Japan during the
past few months, and it is rumored
that they are on their way here.

Communications are starting to play
a big part in terminals. Lear Siegler is
planning to lead the way by providing
a less than $1000 add-on to their
ADM-32A this month. However,
they may be in for a surprise from a
number of quarters including Tele-

New Address: Old Address:

NAME NAME

COMPANY COMPANY

STREET ADDRESS STREET ADDRESS

CITY STATE CITY STATE

ZIP CODE ZIP CODE

Change of
Address

Please notify us immediately if you
move. Use the form below. In the
section marked "Old Address", affix
your Lifelines mailing label—or
write out your old address exactly as
it appears on your label. This will
help the Lifelines Circulation De-
partment to expedite your request.

Lifelines, November 19814

8080 Assembly Language Tutorial —
Part 3: Terminology and Architecture by Ward Christensen

Editor's Note: We continue Ward
Christensen's list of essential terminol-
ogy, which began last month.

OBJECT PROGRAM

An object program is a PROGRAM
which is in the form that the 8080 can
use. This might be in paper tape for-
mat, or on cassette or floppy disk. A
SOURCE PROGRAM must be run
through the ASSEMBLER to produce
an OBJECT PROGRAM which can
then be executed on the 8080.

The most typical example is a printer,
which takes 7 BITs of data to print a
character. The interface between the
computer and the printer is PARAL-
LEL if there is one wire for each BIT.
(See also SERIAL.)

be used. For example, in the instruc-
tion to increment the A REGISTER
'INR A', the INR is the op code, and
'A' is the OPERAND, telling which
REGISTER to increment.

OR

Used in programming, much as it is in
common English: to mean "either" one
condition, "or" another.

For example, "IF A = B OR C = D".

OR also refers to the combining of
BITS, in an "either/or" fashion:

A B A or B

0 0 0
0 11
10 1
111

In an 8080, we are always ORing 8
BITS at a time. For example, to test if
two one-BYTE registers are BOTH
zero, we would "OR" them together.
As we can see by the preceding dia-
gram, the results will be zero only if
ALL the bits were zero in both regis-
ters.

PARITY

There are certain times when it is ap-
propriate to ensure that data is valid,
i.e. that something didn't go wrong
with it as the computer processed it.

This mostly applies to SERIALly sent
data, where a "glitch" could change a
BIT.

Parity means adding a BIT, to keep
the sum of the bits in a byte, either
EVEN or ODD.

For example, in ASCII, the value for
an 'A' is 01000001. If we were dealing
with EVEN parity, the byte would be
OK as it is. If we were dealing with
ODD parity, we would change the
first bit to a 1, i.e. 11000001.

Let's say we were transferring data
SERIALly, and received a byte:
01010000, and that we were operating
with ODD parity. The fact that the
byte has an EVEN number of bits on
(2), says it has EVEN parity, and
therefore is wrong. (We cannot, from
this single byte, determine which BIT
was wrong.)

The 8080 has several instructions for
testing the PARITY of a byte.

PATCH

When programming in assembler,
since your SOURCE PROGRAM has
to be processed by first the editor,
then the ASSEMBLER, if you made a
minor mistake, you hate to go back
through that process just to make a
minor change.

To PATCH your program means to
change the OBJECT PROGRAM to
fix a BUG. Under CP/M, using DDT

(continued next page)
5

OCTAL

A numbering system in base 8. It is
used because of the difficulty in work-
ing with BINARY. When 3 BITS are
grouped together, they are described
as an OCTAL digit, and can contain a
value from 0 to 7. See the table listed
under HEXADECIMAL.

OP CODE

Short for operation code, the name
for an 8080 instruction. For example,
the OP CODE 'INR' is used to incre-
ment the value in a REGISTER. (See
also PSEUDO OP)

OVERFLOW

When a signed arithmetic value in a
computer increases or decreases so
much that it can no longer be held, it is
said to OVERFLOW. For example,
when considering a BYTE to contain a
signed number, it can take on values
only between —128 and +127. Thus,
if we had 120 in a BYTE REGISTER,
and added 10 to it, it would OVER-
FLOW. The results, taken as signed,
would be -126.
(See also CARRY.)

PARALLEL

When transferring data, if each BIT of
data is transferred on its "own wire",
then the transfer is said to take place
in a PARALLEL fashion.

OPEN

Means to prepare a FILE to be pro-
cessed. If you do not issue instructions
to OPEN the file, then, for example
CP/M doesn't know where it is on
disk.

OPENing a file typically involves
scanning a DIRECTORY to find the
name, then bringing some informa-
tion into memory, so that the location
on the FLOPPY DISK to find the in-
formation.

OPERAND

The part of an ASSEMBLER IN-
STRUCTION which says which REG-
ISTER, ADDRESS, or other data is to

Lifelines, Volume II, Number 6

CODE refers to an instruction of the
microprocessor being programmed.

A PSEUDO OP is another type of OP
CODE, which tells the ASSEMBLER
someth ing , not the " t a rge t "
microprocessor.

An example: EQU, meaning equate.
You might use EQU to set a value to
be used later in the program, such as:

PORT EQU 0

Then later in the program, if you
code:

IN PORT

This will be the same as if you had
coded:

IN0

except that, if someone else needs to
modify your program, they don't
have to find all the "IN" instructions,
but can instead just change the one
EQU statement.

Tutorial section (4) will completely
discuss the PSEUDO OPs used by the
CP/M 8080 assembler.

PROGRAM COUNTER

A 16 BIT REGISTER on the 8080 chip
which points to the INSTRUCTION
to be executed. It is incremented 1, 2,
or 3 times when an INSTRUCTION is
executed, so that it points to the next
INSTRUCTION. Certain INSTRUC-
TIONS can cause a totally new value
to be loaded, thus changing the se-
quence of INSTRUCTION execution.
Abbreviation: PC.

PROGRAMMING LANGUAGE

Refers to the language used to pro-
gram a computer. This tutorial is cov-
ering Assembly language: where you
know the internal instructions of the
machine, and program in them using
symbols or MNEMONICS, such as
LXI instead of having to code "11
hex".

An incomplete list of other program-
ming languages which I have known
to run on the 8080 are: APL, BASIC,
"C", COBOL, FORTH, FORTRAN,
LISP, PASCAL, AND PL/I.

PROM

An abbreviation for Programmable
Read Only Memory. Since the con-
tents of RAM (see RAM) are lost
when power to it is shut off, it is nice
to have some PROGRAM which does
not 'go away' under this condition.

The ROM, or PROM provides that,
since its contents aren't lost. The
PROM is able to be written, erased,
and read. The erasing process usually
entails placing the MEMORY under
an ultraviolet light for a few minutes.
Writing the PROM requires special
HARDWARE, because higher than
normal voltages and critical timings
are usually required when writing
PROMs. Newer PROMs are getting
away from these requirements, which
should mean that it will be easier and
less expensive for hobbyists to 'burn'
their own PROMs. ('Burn' is the more
common expression used instead of
'writing', when referring to PROMs.)
The most common PROMs which the
hobbyist uses are the 2708, organized
as IK (1024) BYTES, and 2716, which
is 2K or 2048 BYTES.

PSEUDO OP

In an assembler program, an OP

or SID (see DEBUGGING) makes this
task quite trivial, if you are not add-
ing instructions, since you DO have to
go back through the editor and assem-
bler to "move" things around in your
program.

At times, you might want to allow for
inserting instructions. You may do
this by coding a NOP - a special in-
struction which is "No OPeration". In
the 8080, this is simply the value 00.

PERIPHERAL

A computerese' term meaning a de-
vice which attaches to a computer.
This may refer to a cassette device,
disk drive, teletype, keyboard, video
display, etc.

POINTER

A term used to refer to a REGISTER
PAIR which points to something in
MEMORY. For example, if we are
keying in data to a BUFFER, then we
could talk of having REGISTER PAIR
DE as a POINTER to the input buffer.

PORT

The 8080 has the ability to ADDRESS
up to 256 input devices, and 256 out-
put devices. The control and data for
input/output devices goes through
one of these 256 device ADDRESSes,
called PORTs.

For example, you might have a key-
board connected to PORT 1 to read
the data. You would likely also have
some control BITs coming in on an-
other PORT, typically 0. Thus you
would input from PORT 0 to test if a
key had been pressed, and if so, input
from PORT 1 to read the data.

RAM

An abbreviation for Random Access
Memory. This refers to the MEMORY
in a computer which can be read, and
written. The term may be misleading,
as nearly all MEMORY is random ac-
cess, whether it can be written or not.

READ
READ-ONLY
READ-WRITE

The process of getting data into a
computer is usually called READing.
It may be a BYTE from a TERMINAL,
or a SECTOR from a FLOPPY DISK,
etc.

READ-ONLY is just what it sounds
like: something which may be READ,
but not WRITTEN. For example, a
PROM (see PROM) contains data or
programs, which may be read, but
(usually, or at least not accidentally)
written.

A FLOPPY DISK may be considered
READ-ONLY, either by HARD-

Lifelines, November 1981

PROGRAM

A sequence of INSTRUCTIONS
which tell the computer what to do. A
PROGRAM may be written in AS-
SEMBLER, BASIC, FORTRAN, or
other languages, or may be in ma-
chine language, which means that the
programmer figured out the BIT pat-
terns required for his PROGRAM,
and wrote them in BINARY, OCTAL,
or HEX.

WARE such as a 'notch" in the jacket
which is detected by a switch, or
through SOFTWARE which has a
"BIT" set saying the disk may not be
written upon.

READ-WRITE simply means some-
thing which may be BOTH read and
written. Again it may apply to such
things as MEMORY, or a FLOPPY
DISK.

RS-232

A standard, literally "Recommended
Standard number 232" of EIA, the
Electrical Industry Association. It re-
fers to the electrical and mechanical
means by which SERIAL devices are
interconnected. Most VIDEO dis-
plays, and printers, use this interface.

At a minimum, an RS-232 device
needs to connect 3 wires: ground,
transmitted data, and received data.
Voltages range between —25 and
+ 25 volts.

S-100

A name given to the standard physical
and electrical usage of the 100 pins
which interconnect circuit boards for
certain microcomputers.

Originally designed for the first
"popular" hobbyist microcomputer,
the "ALTAIR", it was later called
"S-100" by other manufacturers not
wanting to "implicitly advertise" for
ALTAIR by calling it the "ALTAIR
BUS" (that's as much my opinion as it
is a fact).

SECTOR

That portion of a FLOPPY DISK
which is the least number of BYTES
which may be transferred to or from
MEMORY in one request. Typically,
128, 256, 512, or 1024 BYTES. A
number of SECTORS make up a
TRACK. See also FLOPPY DISK, and
TRACK.

In CP/M, a SECTOR refers to 128
BYTES of DATA. Your assembler
program READS and WRITES 128
bytes at a time. A portion of CP/M
handles doing the actual I/O to the
FLOPPY DISK, including handling
larger-than-128-byte sectors.

SHIFT

The process of moving BITs of data
left or right. For example, a BYTE of
data representing the number 19, is
shown as the BIT pattern:

00010011

If we shift it left, this means we insert a
0 at the right side, and throw away the
leftmost bit:

00100110

Similarly, a right shift of the original
number results in:

00001001

NOTE that shifting left multiplies the
number by 2, and shifting right di-
vides the number by 2. If in shifting
left, a 1-bit is shifted off, then the re-
sult will not be 2 x the original, since
data is lost. Similarly, if right shifting
shifts off a 1-bit, the answer will be the
INTEGER portion, i.e. won't contain
the ".5": 19 shifted right is 9 since there
is no way in a BYTE to represent the
".5" of "9.5".
(See also CARRY)

REGISTER

A part of the 8080 CHIP which can
contain data. Each REGISTER is
either 8 or 16 BITS long. There are 8
8-BIT REGISTERS, A, B, C, D, E, H,
L, and PSW. (see PSW) You can store
data in any of them. 3 REGISTER
PAIRS exist: B and C, D and E, and H
and L. These may be used to contain
16 BITs of information, such as is used
to contain a MEMORY ADDRESS, or
other data. The PROGRAMmer
works directly with these REGIS-
TERS, with MEMORY, and with the
PERIPHERALS. There are other
REGISTERS which are usually not us-
ed d i r ec t l y , the PROGRAM
COUNTER and the STACK
POINTER.

SERIAL

When data is transferred from one
place to another (between computers,
or between a computer and a video
display or printer), if the data is trans-
ferred along a single wire, the inter-
face is said to be "serial". MODEMs
are serial devices, since it is not prac-
tical to connect to another computer
in a remote location with 7 or 8 in-
dividual wires to transfer the BITs
which make up a BYTE.

Serial transfer may occur at many
speeds, which are measures by how
many "bits" are sent down the wire in
one second. The classic "Teletype"
runs at 110 bits per second. Most MO-
DEMS which hobbyists will encounter
run at 300 bits per second, some going
even to 600 or more. Locally attached
(no modem required) printers and
video displays typically run at 9,600
bits per second, serially.
(See also PARALLEL.)

REGISTER PAIR

When it becomes necessary to deal
with more than an 8 BIT data value,
or to have a REGISTER containing a
MEMORY ADDRESS, a REGISTER
PAIR is used. Registers B and C, D
and E, and H and L may be combined
to make the "BC", "DE", and "HL"
REGISTER PAIRs. They have their
own instructions. For example, INR is
used to increment the value in an 8
BIT REGISTER, while INX is used to
increment the value in a 16 BIT REG-
ISTER PAIR. SOURCE PROGRAM

In the context of this 8080 ASSEM-
BLER tutorial, a SOURCE PRO-
GRAM will be a PROGRAM written
in ASSEMBLER which is in 'human'
readable form, i.e. contains LABELS,
OP CODEs, OPERANDS and option-
ally, comments, such as:

MVI A,8 ;SET LOOP COUNT

The SOURCE PROGRAM is run
through the ASSEMBLER, which con-
verts it to an OBJECT PROGRAM.
(See also OBJECT PROGRAM.)

(continued next page)
7

ROM

An abbreviation for Read Only Mem-
ory. This refers to MEMORY in the
computer which contains PRO-
GRAMS and/or data, which was
placed in the MEMORY when it was
manufactured. The contents of ROM
cannot be changed except during the
manufacturing process. Perhaps more
common in hobbyist computers, is
PROM (see PROM).

Lifelines, Volume II, Number 6

this subject, so I can hardly do it
justice in a few paragraphs. However,
an overview:

STRUCTURED PROGRAMMING is
a means, or "methodology" of pro-
gramming, designed to maximize the
readability and quality of programs,
and thus minimize the programming
errors.

It usually refers to TOP-DOWN pro-
gramming, i.e. in which you make
heavy use of SUBROUTINES, so that
small parts of your program are very
readable, rather than being just a long
series of "in-line" instructions.

STRUCTURED PROGRAMMING
usually implies programming in a
"high level" language, such as "C", or
COBOL, but MAY be done in assem-
bler, too. For example, a SORT pro-
gram might be written; instead of
coding instruction after instruction
"in-line", you might code:

CALL SETUP
CALL READ
CALL SORT
CALL WRITE
JMP FINISH

The beauty of this structured pro-
gramming, is the possibility of readily
observing that there are not bugs in
that program as it stands. Five lines of
code are easily comprehended, and
yes, they will properly sort, given that
the SUBROUTINES do what they
should.

Suppose then, that each SUBROU-
TINE were similarly broken up into
pieces:

SETUP CALL OPENINPUT
CALL GETPARMS
CALL OPENOUTPUT
RET

Again, you can be reasonably certain
there are no bugs in this routine, since
it is so small and easy to grasp.

Of course, since a "CALL" doesn't
"really" do any "work", you will even-
tually have to "write some other in-
structions" which actually do the
work.

Theoretically, following this practice,
you will write programs which are,
yes, longer, and somewhat slower,
but will be more readable and have
fewer bugs.

SUBROUTINES

A series of INSTRUCTIONS which
perform a specific task. It is also possi-
ble to simply code the necessary in-
structions exactly where they are
needed, but frequently, this means a
much longer, and less readable (less
structured) program.

For example, suppose it takes 30 IN-
STRUCTIONS to READ a SECTOR
from a FLOPPY DISK, test for errors,
and return. Let's further say these 30
instructions occupy 70 BYTES. If this
task is done in 10 places in your pro-
gram, this will take a total of 700
BYTES. If however, the READ rou-
tine were made a SUBROUTINE, and
simply CALLed 10 times, then the
total memory would be 70 for the
routine, plus 10 x 3 BYTES per CALL,
or 100 bytes total.

In general, even without memory sav-
ings, using SUBROUTINES improves
the readability of the programs and
they are therefore encouraged.

STACK

An area of computer MEMORY
which is usually used to save the AD-
DRESS to return to a PROGRAM.
When that PROGRAM calls a SUB-
ROUTINE and wants control to re-
turn back to itself.

It is also used to save the contents of
REGISTERS in a PROGRAM, such
that they can be restored after being
used.

The STACK is "LIFO", i.e. Last-In-
First-Out, like a paper spindle', i.e.
the last piece of paper you spindled is
the first to be removed.

The 8080 chip has a 16 BIT register,
called the STACK POINTER which
keeps track of where the 'top' of the
stack currently is. Note that the stack
pointer must be initialized (pointed to
the top of some free place of MEM-
ORY) before it is used. This is because
it moves down in use.

STACK POINTER

A 16 BIT REGISTER on the 8080
CHIP which points to an area of
MEMORY for use in saving data and
ADDRESSes.
(See also STACK.)

STATUS

This word is usually used in referring
to whether or not a particular I/O
device is ready. For example: "What
PORT do you use for CONSOLE sta-
tus?" This means, "Which PORT con-
tains a BIT which may be tested to
determine whether a character may be
output to your console, or whether a
key has been pressed and may be
read?"

In CP/M for example, routines are
supplied which allow testing the sta-
tus of the keyboard, but testing the
console output may not be allowed.
Normally, you just have something to
send to the console, so don't need to
find out whether it is ready. A very
few programs have HARD CODED
I/O which tests to see if the console is
ready for output.

STRUCTURED PROGRAMMING

Entire books have been devoted to

SYNCHRONOUS

Like ASYNCHRONOUS, refers to
events, but in this case, to events
which either occur simultaneously, or
which occur at regular intervals.

SYNCHRONOUS data communica-
tion occurs when the BYTES come at
regular intervals, with no time bet-
ween them. This is more efficient than
ASYNCHRONOUS, but often re-
quires more hardware, or more ex-
pensive hardware, to handle it.

TERMINAL

A device which attaches to a MICRO-
COMPUTER, and which has a key-
board and printer, or a keyboard and
video display.

TRACK

That part of a FLOPPY DISK from
which data may be READ or WRIT-
TEN, while just spinning the disk.

A TRACK is made of SECTORS.
(See also FLOPPY DISK, and SEC-
TOR.)

Lifelines, November 1981

Note OR and XOR are the same, ex-
cept when BOTH the inputs are true.

TTL

A family of integrated circuits, most
frequently used in microcomputers.

Members of the family include such
simple functions as "NOT", or such
complex functions as counters, REG-
ISTERS, etc. In general, the elec-
tronics of a MICROCOMPUTER are
made of some "major" integrated cir-
cuits, such as the CPU, and MEM-
ORY, connected together by TTL
"support" circuitry, which helps
"drive" the electrical signals down the
BUS, and which "decode" for exam-
ple, which address is to be read, etc.

VIDEO

Refers to a means of showing data
from a computer, using a television-
like display.

A VIDEO display may be character
oriented, displaying many lines of
data (8, 16, 24, to as much as 40). Each
line is typically 40, 64, or 80 columns
wide. The most common display is 24
lines of 80 characters, although 16 x
64 is very common as those were the
first low cost ones readily available to
microcomputer users.

WRITE

The process of getting data out of a
microcomputer. You may be WRIT-
ING to a TERMINAL, FLOPPY
DISK, etc.

XOR or EXCLUSIVE OR

The term "OR" usually means "either
or". Since computers require instruc-
tions to be very explicit, when you
mean "either but not both", you mean
"EXCLUSIVE OR", frequently abbre-
viated XOR. Let's compare this with
the OR:
-INPUT- —OUTPUT—

line, because some programmers on
large machines are used to the concept
of "continued" lines, i.e. in which a
single line may be continued for sev-
eral lines. This is not true in a micro-
computer assembler.

The statements may be either COM-
MENTS, or SOURCE LINES. Refer-
encing the CP/M assembler, and most
others, a comment line begins with a

It typically need not be in the first
column, but usually is.

Comments may also be placed on the
same line as an instruction, again us-
ing ";" to signify the end of the in-
struction, and the start of the com-
ment.

A line may begin with a LABEL,
which is used for two purposes:

1. To specify a name under which a
particular value is to be stored, BY
THE ASSEMBLER.

2. To provide a symbolic name by
which a routine may be subse-
quently referenced.

3. To provide a symbolic name by
which data may be subsequently
referenced.

This concludes the TERMS part of the
tutorial. In the following section, I go
into the architecture of the 8080,
which primarily involves a discussion
of a diagram showing the registers in
the chip, and their usage.

THE ASSEMBLER

If you get stuck on any terms I use,
they can be looked up in the "termi-
nology" section of the tutorial.

There are several ways to get pro-
grams into a computer. The most
primitive consists of using front panel
switches, or a monitor program (typi-
cally in PROM). This involves know-
ing what the binary, octal, or hex
equivalent of the necessary instruc-
tions is. Fortunately, we can use our
computers to help us program.

For example, BASIC INTERPRETS
the source program, producing the re-
quired results. This interpretation
process makes the program less effi-
cient, yet the high level of BASIC
allows US to function more efficiently
as programmers.

An ASSEMBLER takes our source
program, and converts it into an OB-
JECT program, which we may run.

The assembler has two primary pur-
poses:

1. To convert the OP CODES or
MNEMONICS which we use, into
the appropriate machine lan-
guage, and

2. To free us from the burden of hav-
ing to keep track of exact ad-
dresses of data and subroutines.

Without an assembler, we would have
to hand-translate the op codes into
binary, and would have to calculate
where data and routines were. If we
change our program by adding or de-
leting instructions, then we have to go
back and hand re-calculate all address
references.

An assembler program consists of
one-line statements. I emphasize one-

Following the label is the OP CODE,
i.e. the instruction to be executed. If
there is no label, spaces or a TAB, are
used to skip to the op code.

Most op codes require one or more
operands. Again, spaces, or more
commonly, a tab is used to separate
the op code from the operands.

Finally, whether there were operands
or not, the optional comments ap-
pear. Again, a tab is used to set the
comments off from the operands. If
the op code required no operands,
then two tabs are usually used, so the
comments line up. The comments be-
gin with the character

Since this tutorial is being printed in
fairly narrow columns, I will be using
just a few spaces, where you will be
using tab characters. Let's look at a
few lines of a program:

A B A OR B A XOR B

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

(continued next page)
9Lifelines, Volume II, Number 6

tains data, adds the length of the data
to the program counter.

In the second pass, when it encounters
an instruction like LXI H,MSG, it
goes to the symbol table, looks up the
address of MSG, and generates that
address into the LXI instruction OB-
JECT CODE.

I don't plan to cover what code gets
generated by each instruction, but
will give this one example: LXI
H, (something) generates a 21 HEX
followed by the address. Being an
8080, the address is stored in memory,
LOW BYTE FIRST, then high byte.

Thus, if MSG was at 1234 hex, the LXI
H,MSG would generate:

21 34 12

Note that this is a 3-byte instruction,
so the assembler, in its first pass,
would have added 3 to the program
counter when the LXI was seen.

•DEFINE ADDRESS OF CHARACTER-OUT
; ROUTINE IN MY PROM

TYPE EQU 0F0C2H ;PROM ADDR

5

; PRINT THE MESSAGE

PRSUB LXI H,MSG ; POINT IO MSG,
CALL PRTHL ; PRINT IT
RET ; RETURN

MSG DB 'This i s a msg ' , 0

; PRINT THE MESSAGE POINTED TO
; BY THE HL REGISTERS

PRTHL MOV A,M ;GET CHAR
CALL TYPE ;TYPE IT
INX H ; POINT IO NEXT
MOV A,M ;GET IT AGAIN
ORA A ; IS IT 0?
JNZ PRTHL ;NO, LOOP
RET ; OTHERWISE, END

IF XXX

IF YYY
•

ENDIF ;YYY
ENDIF ; XXX

This does work with MAC, the CP/M
Macro assembler, but not with ASM.
The reason it doesn't work with ASM
is that a single flag is used to hold the
value of the last IF statement. Thus
the first ENDIF encountered, makes
ASM think it is no longer processing
within an IF.

Another tip: DB's BYTE values may
not be negative, because ASM evalu-
ates numeric operands of the DB to a
16 bit value, then rejects it with an er-
ror message if any of the bits in the
high byte are on. To circumvent this,
code:

MVI A, -5 AND 0FFH

instead of

MVI A, -5

which would cause an error.

The "AND 0FFH" "ANDs" the 16 bit
value for -5, namely in bits:

1111 1111 1111 1011

with the value 0FFH, which is:

0000 0000 1111 1111

producing:

0000 0000 1111 1011

which is acceptable as a DB operand.

THE CP/M ASSEMBLER

Future sections of the tutorial will
teach you the 8080 operation codes. In
the remainder of this section, I'll cover
the PSEUDO OPs which the CP/M
assembler covers.

Briefly, they are:

ORG Set origin for code
generation

EQU EQUate some symbol to a par-
ticular value

SET Similar to EQU, except that
more than one value may be
assigned during one assembly

IF Conditionally generate the
following instructions

ENDIF End of block of conditionally
generated instructions

DB Define byte constant
DS Define uninitialized storage

area
DW Define word constant

These are all adequately explained in
the standard CP/M manuals. Let me
add just a few comments:

When using IF with the CP/M assem-
bler ASM, you may not "nest" them,
i.e:

You can see that if you had tried to
assemble this program by hand,
which IS possible, then decided to
make the message larger, you would
have to remember to change the ad-
dress of PRINT which is in the CALL
PRTHL instruction.

You would probably make a table of
the names you used, i.e. the address of
each. This would be the SYMBOL
TABLE. When you changed your pro-
gram, you would change the symbol
table, so you could properly assemble
the new address into the CALL
PRTHL.

The CP/M 8080 assembler performs
this function by reading your pro-
gram twice. (Thus the term "Two Pass
Assembler" which is frequently ap-
plied to it). The first time, it produces
the symbol table. The second time, us-
ing the symbol table, it generates the
object program.

In more detail: on the first pass, it
reads each line. If it is a comment, it
ignores it. If it is an EQU (EQUATE),
it determines the value, and stores it
into the symbol table. If it is a LABEL
on an instruction or data, it puts that
label into the 'symbol table, with the
current "program counter" address.

Do you need some back issues or
would you like to present a friend
with one of your favorites? See page
37.

If the line contains an instruction, it
adds the length of the instruction to
the program counter. If the line con-

io Lifelines, November 1981

Custom I/O Routines For PIP by Michael J. Karas

Any number of special applications
exist for custom hardware I/O rou-
tines to be used under the CP/M oper-
ating system for inputting data, or for
sending output data to physical de-
vices not supported by the user's
CP/M Custom Basic I/O System
(BIOS). The possibilities range from
simple, immediate, one-shot special
requirements, to those cases where
I/O must be implemented on a system
with no source code for the BIOS
available. Digital Research has pro-
vided an easy-to-implement custom
I/O module capability within the
PIP.COM utility. With this capability
input to a special device may be refer-
enced with the INP: physical device
name. Likewise, output may be sent
to a custom physical device with refer-
ence to the OUT : physical device
name.

A typical application for such a pro-
cedure came to my attention recently
in a discussion with a friend over a
beer. The problem, simply stated, was
how to get the default standard public
domain MODEM program up and
running on a new OSBORNE com-
puter. Note that the 5 1/4 inch disk-
ette medium is known not to be com-
patible with other systems. And an-
other machine with the software up
and running was not available. The

may get a special interface working on
your machine.

A quick look at PIP.COM with DDT
as shown in Figure 1 illustrates the
patch area and INP: and OUT: inter-
face scheme. This example shows the
PIP patching procedure by entering
the source code for the custom I/O
drivers as an assembly language
source file. This file is then assembled
into a ".HEX" file. The program
listing in Figure 2 shows the MCS
8009A serial port patching example.
Note that the equate "PIPENTRY" in
the file must be set to the address
presently at locations 0101H and
0102H in your version of PIP. The ex-
ample shown is fully compatible with
the PIP programs supplied with both
CP/M Versions 1.4 and 2.2.

The procedure for making a patched
PIP.COM would be as shown in
Figure 3. In the example, lower case
characters are generally those typed
by the operator and <cr> indicates
depression of the carriage return.

The patched PIP is now ready to use.
For initial debugging, the .PRN file
listing of the patch assembly may be
used in conjunction with DDT to test
the new drivers.

obvious "not so desirable" solution
was to type in the MODEM.ASM
source code. That could take a long
time. I suggested hooking the RS-232
port of the OSBORNE to an RS-232
port on a machine that had the source
for MODEM available. Assuming
that the hardware connection prob-
lem is not an insurmountable hurdle,
the "immediate" mode patching of
PIP.COM on the OSBORNE with
DDT.COM could make the loading of
MODEM into the OSBORNE with a
simple command like:

A>PIP MODEM.ASM=INP:[B]<cr>

The [B] being used to buffer the source
in memory and alleviate the need to
perform hardware handshaking be-
tween the computers.

I do not know whether my friend im-
plemented the idea described above,
but after noting his amazement that
the INP: and OUT: capability existed
within PIP.COM, I decided to present
an example implementation of the ca-
pability. The application here inter-
faces the 8251A USART on a Mono-
lithic Systems MSC-8009A multibus
Z-80 board with the INP: and OUT:
references. The example is presented
purely as an example and should not
limit your imagination as to how you

A>ddt pip.com<cr>
DDT VERS 2.2
NEXT PC
1E00 0100
-dl00,23F<cr>
0100 C3 CE 04 C9 00 00 C9 00 00 1A 00 00 00 00 00 00
0110 28 49 4E 50 3A 2F 4F 55 54 3A 53 50 41 43 45 29 (INP:/OUT:SPACE)
0120 28 49 4E 50 3A 2F 4F 55 54 3A 53 50 41 43 45 29 (INP:/OUT:SPACE)

.... AND SO ON AND SO ON ...
(Note that all of space from 010AH to 01FFH
is available for patch area.)

01D0 28 49 4E 50 3A 2F 4F 55 54 3A 53 50 41 43 45 29 (INP:/OUT:SPACE)
01E0 28 49 4E 50 3A 2F 4F 55 54 3A 53 50 41 43 45 29 (INP:/OUT:SPACE)
01F0 28 49 4E 50 3A 2F 4F 55 54 3A 53 50 41 43 45 29 (INP:/OUT:SPACE)
0200 20 20 20 43 4F 50 59 52 49 47 48 54 20 28 43 29 COPYRIGHT (C)
0210 20 31 39 37 39 2C 20 44 49 47 49 54 41 4C 20 52 1979, DIGITAL R
0220 45 53 45 41 52 43 48 2C 20 20 50 49 50 20 56 45 ESEARCH, PIP VE
0230 52 53 20 31 2E 35 03 01 06 01 00 24 24 24 20 20 RS 1.5..... $$$
-1100<cr>

0100 JMP 04CE <==== Make note of this address and
0103 RET <==\ set equate "pipentry" in the , xcontinued next page)

Lifelines, Volume II, Number 6 11

0104
0105

NOP
NOP

V patch file to this value.
----- Pip call point for INP:

0106
0107
0108

RET <=
NOP
NOP

----- Pip call point for OUT:

0109
01 OA
01 OB
01 OC

LDAX D
NOP
NOP
NOP

<========----- Pip expects INP: characters
here with parity stripped.

; DIRECT PIP l/O PATCH PROGRAM FOR PIP 1.4 AND PIP 2.2 INP: AND OUT:

THIS PATCH FILE IS USED TO OVERLAY THE FIRST PORTION OF THE
DIGITAL RESEARCH "PIP.COM" FILE TO PERMIT THE BUILT-IN PIP
PHYSICAL DEVICE REFERENCE NAMES "INP:" AND "OUT:" TO BE
USED. THE ENTRY INFORMATION IS AS FOLLOWS:

A) INITIAL EXECUTION ENTRY OF PIP FROM ADDRESS 0100H PASSES
CONTROL INITIALLY TO AN INITIALIZATION ROUTINE TO INITIALIZE
THE CUSTOM l/O DEVICE(S). COMPLETION OF INITIALIZATION PUTS
CONTROL TO THE NORMAL PIP ENTRY POINT.

B) IF PIP.COM IS CALLED WITH A COMMAND LINE LIKE:

A>PIP FILENAME.TYP=INP: <cr>

PIP WILL EXPECT INPUT FROM AN l/O ROUTINE PATCHED INTO
PIP.COM BY CALLING l/O ROUTINE ENTRY POINT AT ADDRESS 0L03H.
THE INPUT CHARACTER IS PASSED BACK TO PIP IN LOCATION 0109H.
PARITY MUST BE STRIPPED FROM INPUT CHARACTERS.

C) IF PIP.COM IS CALLED WITH A COMMAND LINE LIKE:

A>PIP OUT:=FILENAME.TYP<cr>

PIP WILL SEND OUTPUT TO ROUTINE PATCHED INTO PIP.COM BY
BY CALLING l/O ROUTINE ENTRY AT ADDRESS 0106H. THE OUTPUT
CHARACTER IS PASSED FROM PIP IN THE (C) REGISTER.

THIS DEMONSTRATION VERSION OF CUSTOM PIP PATCHING ASSUMES THAT
IT IS DESIRED TO PATCH PIP TO UTILIZE THE SECOND SERIAL l/O
PORT OF A MONOLITHIC SYSTEMS INC MSC-8009A Z-80 CPU CARD. THIS
PORT IS AN 8251A USART WITH BAUD RATE CONTROLLED BY ONE OF THE
COUNTERS IN AN 8253 CHIP. THE OPERATION HERE DEMONSTRATES USE
OF THE PORT FOR BOTH INPUT AND OUTPUT FUNCTIONS. IT IS INITIAL-
IZED TO 300 BAUD, 8 BITS NO PARITY, AND ONE STOP BIT.

/

;MSC 8009A SECOND SERIAL CUSTOM PORT CONFIGURATION

; RS 232 PORT EQUATES FOR MSC 8009 Z-80 BOARD
/

CCTRL EQU OCFH ;CUSTOM 8251A CONTROL PORT
CSTAT EQU OCFH ;CUSTOM 8251A STATUS PORT
CDATA EQU OCEH ;CUSTOM 8251A DATA PORT

12 Lifelines, November 1981

TCC EQU ODFH
TCR EQU ODDH
TCCW EQU 076H

SRRDY EQU 002H
SRVAL EQU 002H
STRDY EQU 001H
STVAL EQU 001H

INITC1 EQU 04 OH
INITC2 EQU 04EH
INITC3 EQU 037H

DCBR EQU 416

;CUSTOM 8253 TIMER CONTROL PORT
;CUSTOM 8253 TIMER REGISTER PORT
; CUSTOM 8253 TIMER CONTROL WORD

;8251A RECEIVER CHARACTER READY MASK
;8251A RECEIVER READY VALUE
;8251A TRANSMITTER EMPTY READY MASK
;8251A TRANSMITTER READY VALUE

;8251A INITIALIZATION . . .

,- . . . ALL THREE OF ' EM

; DEFAULT FOR CUSTOM PORT AT 300 BAUD

;SET PIP JUMP ADDRESS FROM YOUR COPY OF P IP .COM AS VIEWED BY DDT.COM
;AT ADDRESS 01 OOH. THE FOLLOWING EQUATE IS SET TO THE JUMP ADDRESS
;FROM LOCATION 0102H/0103H.

;SET BEFORE ASSEMBLYPIPENTRY EQU OOOOOH

(•ESTABLISH ENTRY POINTS FOR OVERLAY OF P IP .COM PATCH FILE

ORG
JMP

0100H
INITIALIZE

(•BEGINNING OF P IP .COM
;G0 HANDLE INITIALIZATION OF SIO

JMP CI ;CUSTOM INPUT PORT ENTRY LOCATION
JMP CO ; CUSTOM OUTPUT PORT ENTRY LOCATION

RETCHAR:
DB 01AH ;PIP INPUT RETURN CHARACTER LOCATION

;HERE TO SETUP OUR SERIAL PORTS AND THEN PASS CONTROL DOWN INTO PIP .COM

INITIALIZE:
CALL S INIT .-SUBROUTINE TO INITIALIZE USART

; . .AND TIMER.
JMP PIPENTRY ;OFF TO PIP

;CUSTOM SERIAL I /O INITIALIZATION ROUTINE

SINIT :

;SETUP TIMER COUNTER CHIP FOR BAUD RATE CLOCKS

LXI H,DCBR ;GET CUSTOM PORT BAUD RATE CODE
MVI A, TCCW ; GET CUSTOM PORT TIMER MODE WORD
OUT TCC ;SEND IT TO TIMER
MOV A,L ;GET LSB 'S OF BAUD RATE CONSTANT
OUT TCR ;SEND
MOV A,H ;HIGH BYTE
OUT TCR ;SEND THAT ALSO

(continued next page)
13Lifelines, Volume II, Number 6

INITIALIZE THE 8251A WITH TRIED AND TRUE METHOD

MV I B, 020 ;LOOP COUNT
XRA A ;NULL

INITLP:
OUT CCTRL ; RESET 8251A 'S . . .
DCR B
JNZ INITLP ; . . . 'T ILL THEY'RE GOOD AND DEAD

MV I A, INITC1 ;SEND THREE . . .
OUT CCTRL ; . . . INITIALIZATION CHARACTERS .
MVI A, INITC2 ; . . . TO 8251A ' S
OUT CCTRL
MVI A, INITC3
OUT CCTRL
IN CDATA ; PURGE UART GARBAGE
IN CDATA
RET

/
; F INALLY DONE WITH ALL THAT

; CUSTOM PORT INPUT ROUTINE
; GETS CHAR TO PIP RETURN LOCATION AT (0109H)

CI :
IN CSTAT ;GET READY STATUS
ANI SRRDY ;MASK RECEIVER READY
CPI SRVAL ; COMPARE WITH READY VALUE
JNZ CI ; REPEAT TILL INPUT READY
IN CDATA ;GET INPUT IF READY
ANI 07FH ; STRIP PARITY
STA RETCHAR ;PUT INTO PIP RETURN LOCATION
RET

/

; CUSTOM PORT OUTPUT ROUTINE
/ SENDS CHAR IN (C) REGISTER

CO:
IN
ANI

CSTAT
STRDY

;GET READY STATUS
;MASK XMITER READY

CPI STVAL ; COMPARE WITH READY VALUE
JNZ
MOV

CO
A,C

; REPEAT TILL XMITER EMPTY

OUT
RET

CDATA ; PUT DATA OUT NOW THAT READY

END

;+++ . . . END OF F ILE

Lifelines, November 198114

B>ddt pip.com<cr>
DDT VERS 2.2
NEXT PC
1E00 0100
-ipippat.hex<cr>
-r <cr>
NEXT PC
1E00 0000
-dlOO,17f <cr>

<=== Note ending PIP address so to SAVE
01EH - 1 or 30 pages after patching.

<=== Dump to see installed patch.

0100 C3 0A 01 C3
0110 21 A0 01 3E
0120 D3 CF 05 C2
0130 D3 CF DB CE
0140 DB CE E6 7F
0150 01 79 D3 CE
0160 28 49 4E 50
0170 28 49 4E 50

37 01 C3 48 01 1A
76 D3 DF 7D D3 DD
20 01 3E 40 D3 CF
DB CE C9 DB CF E6
32 09 01 C9 DB CF
C9 2F 4F 55 54 3A
3A 2F 4F 55 54 3A
3A 2F 4F 55 54 3A

CD 10 01 C3 00 00
7C D3 DD 06 14 AF
3E 4E D3 CF 3E 37
02 FE 02 C2 37 01
E6 01 FE 01 C2 48
53 50 41 43 45 29
53 50 41 43 45 29
53 50 41 43 45 29

....7..H........
!..> v..} ..|

>@. >N..>7
7.

....2 H

.y.../OUT:SPACE)
(INP:/OUT:SPACE)
(INP:/OUT:SPACE)

-~c <=== Exit DDT to system
B>save 30 pippat.com<cr> <== save off patched PIP.COM

KIB-BITZ

i
WONT WORK.

Lifelines, Volume II, Number 6 15

Tips & Techniques by Ward Christensen

If you are "comfortable" with the terms: XSUB
PIP
B:=A:MAST.CAT
B:=A:ORDER
B:=A:OUTLINE
B:=A:PREPROC.BAS
B:=A:PREPROC.PRE
B:=A:REPLY.LTR
B:=A:SPELL.ASC
B:=A:SPELL.BAS

When you then SUBMIT this file, XSUB hooks itself in,
and returns. CCP, the console command processor, then
reads the next line, and loads PIP.

XSUB then takes over, and reads the following lines one at
a time, giving them to PIP. This is far superior in perfor-
mance to an ordinary SUB file looking like:

PIP B: = A:MAST.CAT
PIPB:=A:ORDER
PIP B:=A:OUTLINE
PIPB:=A:PREPROC.BAS
PIPB:=A:PREPROC.PRE
PIPB:=A:REPLY.LTR
PIPB:=A:SPELL.ASC
PIPB:=A:SPELL.BAS

because with XSUB, PIP doesn't have to be loaded again
for each command line.

* CP/M disk allocation (IK for single density, 2K or
more for double)

* XSUB.COM, SUBMIT.COM and $$$.SUB
* That SUBMIT writes one command per sector, and

processes them "backwards".
* SAVE n filename. type

then skip to "IMPLEMENTATION".

CP/M Disk Allocation

CP/M allocates the disk in "chunks", usually called
BLOCKS or GROUPS. In single density, these are IK (8
sectors) long, and in double density, "usually" 2K (16 sec-
tors) long.

SUBMIT

CP/M SUBMIT.COM takes a file of commands, and
writes them to disk, to a file called $$$.SUB, in REVERSE
order. This cleverness (score another one for Dr. Gary
Kildall) is done in order to efficiently process the file.
Here's how:

1. SUBMIT fetches the "next" command, by OPENing
$$$.SUB, taking the file size byte (number of sectors)
from the FCB and uses that as the sector to read.

2. It reads the sector into the command buffer, just as it
would appear if you had typed it. (Thus it had been
stored out on the disk, one command per sector, in the
form "nn command 00" where nn is the 1-byte length,
in binary, and "0" is a final binary 00.

3. It then DECREMENTS the file size by 1, (so next time
it reads the "last sector in the file", it will get the
PREVIOUS sector).

4. It CLOSES $$$.SUB, writing its directory entry back.

Of significance to this programming tip, is that CP/M ac-
cesses the disk DIRECTORY, then the $$$.SUB file, then
the DIRECTORY, for EVERY command line processed.

XSUB, (Not available in CP/M 1.4), is used to allow entry
of sub-command lines to PIP, DDT, SID, or other pro-
grams that call the BDOS "read line" function. It "hangs
itself" under CCP, and reads commands for these pro-
grams, which would usually be typed at the console.

For example, if you want to PIP 8 files from A: to B:, but
they are not able to be specified by any or type
name (i.e. not *.asm), then you might want to create a list
of the names with the CP/M editor (or WordMaster, or
my FMAP program which writes directory names to a
disk file, etc), so it looks like:

SAVE 1 X

My Submit-speeder-upper idea makes use of the SAVE
command, to "reserve" a place on disk. For example, if
you SAVE 1 X on a blank disk, then the first IK of the disk
(or 2K or more in double density) will have "X" as its
name, and nothing else will go there. This not only re-
serves the first 1 or 2K on disk, but also reserves an entry
in the first directory block.

If later, when the disk is fairly full, you want to make an
"opening" near the front of the disk, (see why, later), just
temporarily ERA X. If you should want to reserve more
than the minimum 1 or 2K, then remember SAVE takes as
an operand, the number of PAGES (256 bytes each) to
save. For example, in my double density system, if I save
from 1 to 8, it reserves 2K, or 16-128 byte sectors. If I save
9, it "reserves" 4K, or 32 sectors.

IMPLEMENTATION

The "overhead" time necessary to process a long SUB file
under CP/M is very dependent upon WHERE on the disk
the temporary file ($$$.SUB) created by the SUBMIT
command is stored.

Lifelines, November 198116

As a "worst case" example, if you had a "nearly full" disk,
and the temporary $$$.SUB file had to be written to track
76, then processing each command would require:

1. A seek to the directory (track 2) to open the file;
2. A seek to track 76 to read the command;
3. A seek back to the directory to close the $$$.SUB file,

making it one shorter.

The "obvious" solution is to "force" the placement of the
$$$.SUB file "closer" to the directory. How might this be
done?

1. When creating a system disk, after formatting it, do
"SAVE 1 X".

2. Keep the "place holder" file "X" on your disk at all
times.

3. When you are about to issue the SUBMIT command,
type: "ERA X". This will "open up" a place for the
$$$.SUB file to "sit".

On a single density disk, this means that up to 8 SUBMIT
commands will be processed, QUICKLY, since it will be
able to go between the directory and the $$$.SUB file,
WITHOUT A SEEK. You may use your "own creativity"
in setting up and using the "X" file.

For example, if you frequently have VERY LARGE SUB-
MIT files, then IK, make your save higher. You could also
save multiple files, such as "X" and "XI". Then, when you
need 8 or less entries for a submit, ERA X. For 9 to 16,
ERA X then ERA XI. You wouldn't want to just have a
"very big" "X" file, as frequently you are placing things
ONTO the disk which contains "X", and if all of "X" were
not filled with the $$$.SUB file, you would be unable to
place "X" back since some of the files written to the disk
might have "filled in" the space normally reserved for "X".

I take a more simple approach: under double density, I
SAVE 9 X so that I have 16 sectors available for $$$.SUB.
This is usually sufficient.

Another way of saving time is to consider how to "mini-
mize" the number of lines entered. For example, in testing
CBBS® , the Computerized Bulletin Board System, I want
to have two versions of the .COM file, namely an ON-
LINE version, and a TEST version, for testing at home
without a modem.

Formerly, I used a TEST EQU TRUE flag in the assembly,
but that took a complete assembly, only to change per-
haps a dozen instructions and ten flags. So, I created a
SUB file for use with SID, that "patched" the live version,
to make it the test version. For example, SID allows:

s.welcom
0

would do the same thing.

Similarly, one day I was using XSUB to PIP certain files
from one disk to another, so I made a list of all of them. I
then realized I was PIPping ALL the .ASM files, all the
.DOC files, and an assortment of others. So I changed my
SUB file to contain all specific names which I couldn't
specify with "*", such as:

B:=C:MAILLIST.INT

but then deleted all the individual .ASM names, replacing
them with:

B:=C:*.ASM

and similarly with .DOC files, have just:

B:=C:*.DOC

By employing these techniques:

1. Reserving a "slot" near the directory for the $$$.SUB
file, and

2. efficiently using the SUB file entries,

I am able to significantly speed up many of the functions I
call upon my system to perform.

SID/DDT with .COM files which return to CCP

Skip this paragraph if you know what CCP is. CCP is the
CP/M Console Command Processor, which handles the
TYPE, DIR, ERA, SAVE, REN, and USER built-in com-
mands, and loads and executes other programs such as
ASM, MBASIC, etc.

There are 2 principle ways in which CP/M .COM files
"end" their execution:

1. They may "reboot" by JMPing to 0, or by issuing
BDOS call 0; or

2. They may simply "RETurn" to CCP (usually having
established their own STACK, then restoring the CCP
stack before returning).

Typical of case (1) are: ED, ASM, and MBASIC, which
want to make use of all available memory, thus overlay-
ing CCP to use memory up to the bottom of BDOS. Typi-
cal of case (2) are: STAT, and most user programs. Spe-
cial consideration must be given when testing case (2) pro-
grams under DDT or SID. Specifically, since they "RET"
(return to CCP) you must supply them something to
return to.

When you run your program under normal CP/M opera-
tion, CCP "CALLS" your program i.e. you may RET to
CCP.

However, when you test your program with DDT or SID,
the stack pointer is set at 100H, so that it uses OFFH
downward for a stack. Also, no return address is sup-
plied if you execute your program via "G100". Don't be

(continued next page)
17

to mean "store a 0 into the byte at label WELCOM". This
takes 3 lines, and thus, under XSUB, 6 directory accesses,
and 3 accesses of $$$.SUB. I then realized the single line
(true for SID only):

f .welcom, .welcom,0

Lifelines, Volume II, Number 6

tempted to 'read between the lines" in
SID, and "C100" i.e. call the program
at 100:. This call facility is used for
SID utilities, and you may use it, but
no breakpoints or pass points will be
set.

Here's how to get around that: Set up
some portion of high memory as a
stack. For example, I have a 2K block
at 0F800H which I frequently load
special programs into. I type in the
following at 0F000H:

F800 LXI SP , F900
F803 CALL 100
F806 RST 7

After preparing to execute the pro-
gram at 100H (such as by placing
names in the FCBs with the DDT /SID
"I" command), I type:

GF000

which executes my patch, loading the
stack pointer, and calling the program
at 100H.

When the program has finished execu-
tion, it returns, hits the "RST 7",
which returns control to DDT or SID.

As an aside, if I am debugging a pro-
gram with SID which returns to 0
when it is done, I do:

p0

to set a pass point' at 0. Then, when
debugging the program, if it should
end, I can 'regain control' via the pass
point at 0.

;Name: MOVER. ASM
; Author: Ward Christensen
; Writ ten : 05 /25 /8 1
;Func t ion : Lata movement subroutine which de tec t s
; i f i t i s running on a Z -80 , and does
; an LDIR i f so . Otherwise, 8080
; instructions are used
p roces so r : ASM
; Dependencies : None. 8080 /Z-80 /8085
;Revs (l a s t f i r s t) :
; (NONE)
;Usage :
; On entry to the rou t ine :
; HL = Source f ie ld address
; DE = Dest inat ion f ie ld address
; BC = length to be moved.

;Log ic : The 8080 s e t s the par i ty flag on any
; ar i thmet ic o r logical ins t ruc t ion .
; The Z-80 s e t s i t only on logical
; ins t ruc t ions . Arithmetic instruct ions
; use th is b i t a s an overflow b i t , so
; something like MVI A, 2, INR A, will rese t
; i t a s an overflow flag on a Z-80 , but
; set i t a s even par i ty , on an 8080 .

; I INVENTED THIS ROUTINE WHILE Si; ITCHING BETWEEN AN
;8080 AND A Z-80 BOARD, WHILE NOT WANTING TO HAVE TO
; REASSEMBLE THE DATA MOVES DONE BY MY BIOS VIO SCROLL
; ROUTINE AND THE DOUBLE DENSITY DEBLOCKING ROUTINE.

9

;N-O-T-E THE 3 INSTRUCTIONS MAY BE USED WITHOUT THE MOVE
; IN OTHER PROGRAMS:

MVI A, 2

9 INR A

9 JPE XXXXX ;JMP IF 8080 (E)IGHTY-EIGHTY

; o r AS A MEMORY-AID?

9 MVI A, 2

9 INR A

9 JPO XXXXX ;JMP IF Z-80

9

9

MOVER MVI A, 2 ;A = 2
INR A ; SET PARITY ONLY IF 8080
JPE MOV8080 ; GO TO THE 8080 MOVE
DB 0EDH, 0B0H ;THIS IS THE Z-80 MOVE, LDIR
RET

9

MOV8080 MOV A,M
INX H
STAX D
INX D
DCX B
MOV A,B
ORA 0
JNZ MOV8080
RET

Tip Contest
Did you know that those tips and
techniques you've created may be
valuable to others and worth $$ to
you? Our tip-of-the-month winner
receives a $50 prize. So send your tips
and techniques, in machine-readable
form, to Lifelines Tip Contest, 1651
Third Avenue, New York, N.Y.
10028. We're looking forward to hear-
ing from you.

lifelines, November 198118

After the Game by Stephen Walton

Editor's Note: Stephen Walton's story
represents our first foray into the
world of fiction. We're anxious to
hear what you think of this story, and
what your feelings are about an occa-
sional fiction feature.

from overrunning the Empire and
bought him time. He built a thousand
new ships, and with them he crushed
his enemy.

"Hey Thorvald, nice going," said
Peter.

"It's gotten almost too easy," said
Robin Harris, who had told the com-
puter his name was Thorvald II.

"Well, you've got the hang of it by
now. Don't forget to decommission
the ships you don't need for patrol, or
your U factor will skyrocket."

"Right." Harris made the appropriate
keyboard entry.

"How did you like the bad guys?"
Peter was grinning.

Harris looked over his shoulder at his
host. "I knew you had to have some-
thing up your sleeve, with the ma-
chine asking me for someone or
something you don't like.' "

Peter nodded. "Of course. You just
didn't do well enough the other times
to get a chance to meet them."

"Don't rub it in."

"Do you really like the game?" Peter
was looking at Harris anxiously; he
was twenty-eight years old and had
had his own computer for three
months now. Harris had finally set
aside an evening for seeing what the
machine could do.

"Yes, I like it," Harris said. "It does get
you involved. By the way, what time
is it?"

Peter glanced at his digital watch.
"Ten twenty-six."

"Good God, I've got to catch a train."
Harris stood up and stretched his arms
over his head. "I had no idea it was
getting so late."

Peter was grinning again. "That's
what these machines do best — they

eat time."

"Uh-huh," said Harris, taking his coat
from the bed in the middle of the clut-
tered studio apartment.

"I'm really proud of that program,"
Peter said. "But there are a few more
things I still want to do with it ."

"Better tell me — or show me — an-
other time. Got to run. But thanks for
having me over."

"My pleasure."

In a cab, Harris wondered at Peter's
intense attachment to his electronic
toy. It was all he would talk about in
the office these days. And when you
visited, and he showed you the com-
puter and the games it played, it was
as though he had a beautiful new girl-
friend to introduce, or a clever child.

Harris caught the eleven o'clock train
at Grand Central, and sat at the rear
of the smoker; the last car, it would
put him where he would want to be on
the North White Plains platform. He
lit a cigarette and settled back in his
seat. He had done pretty well as the
ruler of an interstellar empire — after
he twice had been executed by rebels,
and once had wrecked the economy so
that a dark age had come.

Harris scarcely noticed that the train
had stopped in the tunnel. Once he
had figured out what was going on in
the game, then he had done all right.
He smiled at his reflection in the win-
dow. He'd be as wrapped up in it as
Peter pretty soon, if he wasn't careful.

That was his next-to-last thought. The
pain and the crashing sound came to-
gether. He didn't have time to think
through to the conclusion that his
train had been, was being, struck in
the rear by another. His last thought
was a wordless realization: that he
was dying.

It amused him to reign as Thorvald II.
The mess he had inherited did not
amuse him, but it could be managed.
He spent heavily on economic devel-
opment, made sure of adequate pa-
trol, and cut taxes. Three star systems
rebelled anyway, but the Navy
brought them back into line without
loss of ships.

In the second cycle, he continued his
established policies — spending to
cook the economy, fleets sufficient for
patrol but not intimidating in their
size, low taxes — and the Empire re-
sponded well. The Gross Imperial
Product went up substantially, while
the Index of Unrest compiled by his
Secret Service went below the danger
threshold by a comfortable margin.
He was popular, and there was no
more rebellion.

Within a few cycles, prosperity was a
fact. Now he could turn his attention
outward, and try to make the Empire
grow. He held his exploration spend-
ing to a small, fixed proportion of the
total budget, knowing it could have
an unfavorable effect on the political
climate. He lost a few popularity
points, but the Index of Unrest re-
mained in the safe range.

His Empire grew, some cycles by just
one or two usable star systems, some
cycles by 18 or 24 or more. The Navy
was gradually enlarged to patrol what
he ruled, so that piracy would not
take root, and the economy per-
formed well.

Then one of his exploring groups en-
countered the insanely destructive
Licorice Empire, and was wiped out.
He committed the Navy. The Lico-
rice, who had the advantage of num-
bers, destroyed a dozen of his star sys-
tems and nearly a hundred of his bat-
tle cruisers. But the Navy kept them

Watch this space next month for the
exciting conclusion of our story.

Lifelines, Volume II, Number 6 19

Notes On dBase II
The BASIC-like command language within dBase II has
some quirks which may cause confusion for a person used
to Microsoft-like BASICs. A few of these are documented,
most have to be discovered by trial and errors. Some ex-
amples:

A carriage return entered in response to the following
command will give a string length of 1, and a value of a
single space.

Accept "give me a string" gstring

This makes it difficult to test for a null entry, since there
are other entries which will return the same values.

But remember that if you get the string by
store " " to gstring
@0,0 say "gimme a string" get gstring

a null entry will return the previous value of gstring,
which in this case is 7 spaces.

In a typical application you may want to take names and
addresses from a data base and write them to a MailMerge
file for use with WordStar. Let's suppose that you have
fields of 35 characters in length called name, address, city,
state, zip.

So you write out the database to a delimited file:

Copy to Mail.dat name, address,city,state, zip ;
delimited with

corresponds to
mid$(string,startpos,numofchars)

you might think

store $(oldstring$,l,@(oldstring$," ")) to new-
string would work. The error, though, occurs on the first
left paren.

What you have to do (don't ask why) is
store @(oldstring," ") to pos
store str(pos,2) to posl
store $(oldstring,l,'&posl') to newstring

This allows you to bring the strings out of the database,
edit them, and write them to disk with

Set alternate to "MAIL.DAT"
set alternate on

... blah blah ...

Set alternate off

Another approach is to construct one line for each entry,
by using the 'concatenation with blank squash' operator,
and stripping the blanks off the right end of this large
string just before writing it to the file.

e.g. store name-", "-address-", "-city-", "-state-", "-
zipto recstring

(strip blanks as above)
(write to Mail.DAT)

Surprise! Since the field widths of name, address are 35
characters each, "Mail.dat" has a 35 character blank-filled
field for each. MailMerge will print the spaces, making
your letter unreadable. If you omit the "delimited" clause,
the spaces will be ignored by MailMerge, but the data file
will have a line length of 100 + characters and thus be dif-
ficult to view. You will also have to scrupulously avoid
any commas in these fields.

So why not strip off the blanks? Easy in Microsoft BASIC:
10 SPOT = LEN(0LD?)
20 WHILE MID?(OLD? ,SPOT,1)= 1B ’
30 SPOT = SPOT-1
40 WEND
50 NEW? = MID?(OLD?,1,SPOT)

Since in dBase
@ (< char string 1 > , < char string 2 >)

roughly corresponds to
instr(string,searchstring)

and
$(< char expression > , < start > , < length >)

On CP/M 2.25a
For the TRS-80 Model II

Peachtree has developed a special LST driver for this
CP/M — some dealers may have it. WordStar users can
get best performance from CP/M 2.25a by installing as a
TRS-80 II terminal with the next choice IN' as in an FMG
CP/M (NOT a Y" as stipulated for Lifeboat's!!). It's
preferable if you have a serial printer to use WordStar's
direct driver; install serial printers on the TRS-80 Model II
by specifying Model II SIO on the driver menu and using
the proper protocol within WordStar. If you are installing
WordStar using the CP/M LST device, for printers
needing a communications protocol (such as ETX-ACK or
XON-XOFF), installation should be implemented in the
CONFIG utility of CP/M 2.25a only, NOT in WordStar's
INSTALL; tell it 'no protocol'.

Lifelines, November 1981

A Review of Pascal MT + by James Gagne

Version 5.2 of MT MicroSYSTEMS'
native-code Pascal compiler, newly
released by Michael Lehman, has al-
ready gained a reputation in the com-
munity as the best CP/M-based Pas-
cal system. It features a native-code
compiler that produces Microsoft
compatible, relocatable machine code
directly (no assembly required) and
conforms to the new ISO draft Pascal
standard. However, I was disap-
pointed in the usefulness of /MT T as
a development system.

If one just examines its specifications,
it is an extremely impressive system:

The compiler features separate compi-
lation of code modules; in-line assem-
bly code; chaining; full logical byte
and 16-bit word operations; your
choice of 32-bit floating point,
18-digit BCD, or AMD9511 hard-
ware-supported real numbers; full
compatibility with most UCSD Pascal
extensions; capability of creating
stand-alone, ROM-based microcom-
puter applications; direct access to in-
put and output ports; and optional
user-supplied error handlers. The best
new feature for large programs is di-
rect support of up to 256 memory
overlays.

And that's just the compiler. In addi-
tion, there's a full symbolic debugger,
a disassembler (which intermingles
Pascal source with disassembled ma-
chine language for a super, machine-
level listing), and a fast, memory-
efficient linker that's Microsoft com-
patible (except for a few, rarely used
features) and which also supports the
256 memory overlays.

The next new development is the
speed-programming package. A
screen-oriented editor forms the base,
which you configure with a Pascal
program for the terminal you are us-
ing. In addition, if you are familiar
with Pascal, it is relatively easy to
map the commands of the editor (con-
trol-a through control-z) to whatever
function keys are present on your ter-
minal. This editor combines the fea-
tures of the original UCSD editor and

Lifelines, Volume II, Number 6

WordMaster which best support Pas-
cal source creation.

Once you've created or corrected a
Pascal program, you can: a) automat-
ically format your program, b) call a
rapid syntax scanner to point out any
syntax errors while still in the editor,
where the information is maximally
useful, and c) use a variable-name
checker to tell you which names have
occurred only once in your source and
are therefore likely to have been unde-
clared or misspelled. Finally, a fast
compiler (which omits the syntax
check by assuming you've already
done it) compiles your program.

Reviewer Biases

I come to the job of reviewing a Pascal
compiler with a definite point of view.
I've been a UCSD Pascal fanatic since
I managed to get my first Z-80 UCSD
system going in 1977.

I've used CP/M longer than the UCSD
system and am quite familiar with it.
But using high-level languages under
CP/M is simply too slow. I can't stand
BASIC and was never interested in
FORTH.

Pascal is appealing because of its clar-
ity and its elegance, and because of
the ease with which software tools can
be built and maintained. I've gradu-
ally built larger and larger programs
in the UCSD system, and am in the
process of releasing a 12,000-line
(nearly 70K of p-code, 24K of data)
text formatting program.

Therefore, I reviewed Pascal/MT +
paying particular attention to the ease
with which one could create software
tools with which to build large pro-
grams, and also to the support for sep-
arate compilation and memory man-
agement.

I have spent perhaps thirty hours with
the /MT + system, allowing me to be-
come moderately familiar with its fa-
cilities. It would take another two
months of use to describe the system

from the level of real familiarity; it is
that big.

Installation

Installing the compiler and linker con-
sisted of copying the distribution disk.
I found the instructions for modifying
the editor for my terminal reasonably
clear and straight-forward, although
there are about 35 files involved (half
of which allow you to link the whole
thing together with a single SUBMIT
file, which is supplied). Automatic
linking of SPP's many modules went
well; it was fun to see the prompts go
whizzing by. I would guess that if
you're familiar with Pascal and have a
standard terminal, it would take
thirty to sixty minutes to get going.

Using the Speedprogramming
Package

The SpeedProgramming Package
("SPP") signs on. with a menu that
allows you your choice of tools, from
listing a directory to executing a pro-
gram (comple te with s epa ra t e
prompts for the program name and
run-time commands) to compiling,
linking, formatting, or executing a
syntax or variable check. All utilities
work only on the program held in the
SPP buffer, which is 16K bytes or so
with a 64K system.

The directory lister consistently wrote
garbage to my screen, and I ignored it.
I tried writing and linking in one of
my own, but I couldn't figure out how
to trick CP/M into letting me read
logical Groups 0 and 1, where the di-
rectory resides. (It's been done, and
allows you not to make assumptions
about disk format, which are required
if you read physical sectors.)

The editor was reasonably quick, ex-
cept for the darn disk delays imposed
by CP/M. (Loading a 3-line program
took ten seconds, twenty times longer
than my UCSD system on the same
computer.) Oops! SPP ignores lower-
case commands, so I need my shifty

(continued next p

key. This is somewhat of a pain, since
other commands require the control
key. So I have to grope with both
hands.

The SPP editor is line-oriented. Any
lines longer than 80 characters are
truncated without warning. (Watch
out for insertions in the middle.) I can
insert a carriage return anywhere with
a control-N. But you can't erase a car-
riage return once inserted; you can
delete only single characters within a
line (control-G) or entire lines
(control-Y). This is a pain. The delete
function needs work.

Although there's no way to edit a file
larger than the buffer, you should be
breaking your stuff up into modules
or $1 (include) files anyway.

The editor fell apart when I edited
OTHELLO, a test program I'd trans-
ported from a UCSD Pascal Users' So-
ciety library disk. The problem is that
UCSD pads text with nulls, which my
conversion utility does not adequately
strip out. Upon loading this program
into SPP, the editor added a lot of
junk to the end of the buffer and ulti-
mately crashed; the compiler was no
more able to cope. And the system did
not indicate what the problem was.

Editing text containing nulls is admit-
tedly a severe test. But my other
CP/M-based editor took it completely
in stride, and I'm worried that you'd
never know what happened if your
disk system added some junk to the
file you were editing.

Overall, I rate the robustness of the
editor as poor. It works just fine so
long as your programming practices
match those of the author.

The syntax checker and Pascal source
formatter worked well and were fast.
When the syntax checker finds an er-
ror, it puts an error description at the
bottom of the screen and positions the
cursor at the offending spot. When
faced with a portion of a program
(e.g., the contents of an include file),
the syntax checker complained that
there was no PROGRAM declaration
and would not go further. The for-

tter provided a handsome program
at designed both to be tolerant of

ate syntax and to point it out
’s only problem is that if the

fop ;s nearly full, it will trash
nes of your program.

The variable-checker was of less use,
simply writing to a file named
"NAMES.$$$" all variables that were
not Pascal reserved words and oc-
curred only once. The problem is, I
usually misspell my variables con-
sistently. Luckily, the variable-
checker ignores whether variables are
upper or lower case or mixed, like the
compiler, and should be a great help
for the occasional typo.

Overall, the syntax and variable
checks spotted about half my mis-
takes, with the rest pointed out much
later in the last pass of the compiler.

How fast is SPP?

I found that SPP didn't save as much
time as I'd hoped. The SPP fast com-
piler is only about 10% faster than the
regular one for small programs. And
it ignores $1 (the include compiler
directive) within the source, reading
only from memory, and thus limiting
program size to about 500 lines.

To cycle from the editor, through a
compilation /linkage and program run
and then back to the editor, takes
about two minutes for a one-line pro-
gram. For larger programs, add about
a minute for every 150 lines. This is
terrible, although in comparison with
most of the other CP/M-based, ma-
chine language compilers, it is pretty
good. (Compare with 15 seconds for
my UCSD system, 35 seconds for Ap-
ple Pascal, or a little over a minute
with Pascal /M.)

To compile and link when not using
the SPP package involves a basic
90-second overhead. This is the time
required to load the three passes of the
compiler, create the intermediate file
and then the relocatable file, and load
and execute the linker. In addition to
this baseline overhead, the system
compiles and links at about 200 lines
per minute, a respectable figure.
These times would be reduced with a
hard disk system.

Once the program itself has been
created and linked, it runs about ten
times faster than a comparable pro-
gram running under UCSD Pascal and
twenty times faster than Pascal /M. It
is in turn nearly as fast as code pro-
duced by PL /I and half as fast as an
equivalent program written in assem-
bly language. Interestingly, it is about

half as fast as the best 16-bit micro-
processor Pascal, indicating that all
you may need to keep up to speed is a
fast Z-80. (These times are taken from
the carefully wrought benchmark
comparison by Jim Gilbreath, "A
High-Level Language Benchmark",
Byte, 6:6, pp. 180-198, Sept. 1981.)
(Note that the UCSD system has a
new wrinkle: soon, a p-code to native
machine code translator will convert
time-sensitive portions of a program
to provide a factor-of-10 speedup.)

Using the compiler

I found the user interface to the com-
piler, like to the rest of the system, to
be superb. Prompts and error mes-
sages were explicit, and the program
lets you know what's going on.
Again, lower-case commands were
disallowed. And error messages oc-
curring during the final pass were in-
convenient to find and correct, since
you were given only the procedure
name, error number, line number
from the beginning of the file, and the
last identifier name. I'd like in addi-
tion a descriptive error message as
well as line displacement from the
start of the procedure.

Once when it had been correctly
edited, at first my 787-line OTHELLO
program would not compile, due to
lack of memory in my 56-K system.
Then I tried the suggestion in the
manual of recovering stack space oc-
cupied by rarely used built-in proce-
dures, using the $K compiler direc-
tive. Now the file compiled. But the
linker ran out of memory until I speci-
fied the data area with a "/D" linker
directive, which tells the linker not to
initialize the data area and thus allows
more code to be linked. But then I
could not get the thing to run; invok-
ing OTHELLO from CP/M simply
caused a return to the operating sys-
tem. Much playing around on my
own was not helpful. Sigh. A call to
MTMicroSYSTEMS support pro-
vided the answer: there was an unde-
clared call to "@XOP" pointed out by
the linker. It turns out that this is a
real number procedure, and you must
link in your choice of real number
libraries. Otherwise a call to @XOP is
left as a call to 0: a warm boot.

It is not clear what limitations one
would face with a bigger program in a
64K system. However, it does appear

Lifelines, November 1981

that much over 1000 lines, you would
be forced to use separate compilation
and overlay modules, or the thing
won't compile or link.

The first pass of the compiler pro-
duces the listing if you desire. The
listing is simply the source code with
line numbers, a nesting level indica-
tion, and INCLUDEd files pulled in. I
found it of use only when debugging,
when you need line numbers to find
out where you are. To obtain code
sizes of each procedure, you must
have the printer following the console
output when the compiler is operat-
ing, since the last pass produces a list
of procedure names with relative off-
sets from the start of the program.
The only other way to find your way
around your code in memory is to opt
for a symbol table dump while linking
(but it's in the wrong order) or to use
the disassembler.

The disassembler is very slick, pro-
ducing a listing of intermingled Pascal
source lines and their accompanying
assembly code. (You'd have to com-
ment out the Pascal source to reassem-
ble, however; its purpose is as a list-
ing.) The disassembler produces gar-
bage unless you choose the disassem-
bly option while compiling; this op-
tion adds considerable information to
the relocatable code to assist the
disassembler in its work. It is intended
for those situations when you really
must dig around in your code, and is
not really for routine use while creat-
ing a program. The run-time library is
not included in a disassembled listing.

The debugger allows you to examine
variables and to execute a program in
trace mode (one or more lines at a
time, traced by line number) or at full
speed under breakpoint control (set at
procedure/function entry only). You
may enable a display of procedures
being entered and left. Its use is lim-
ited by the fact that you can't change
variables. Nor is it possible to begin
execution anywhere but the beginning
of a program or at a spot where a
breakpoint had been encountered.
Digging through arrays, records, and
other structured variables is entirely
up to the user; all you're given is a
DDT-style Hex/ASCII dump of the 16
bytes of your choice (offsets from the
start of the variable are permitted).
Although a SID-compatible symbol
table is available from the linker, it
lists only procedure entry points, not

Lifelines, Volume II, Number 6

variable locations, and is of limited
help.

Nevertheless, the debugger is fully
symbolic and is an enormous im-
provement over inserting those dam
"..in procedure xyz; abc = 13" trace
messages in program source. Its use
requires a listing and compiling with
the debugger option set, then linking
in the debugger itself, which becomes
the main program. In trying to debug
my OTHELLO program, I found that
adding the debugger unquestionably
exceeded memory bounds; it is of lim-
ited use in large programs. And the
debugger option increased the size of
one big procedure past the /MT + up-
per limit (2 kilobytes per procedure
body).

Support for software tools

I am enormously fond of creating pro-
cedures and functions that perform a
simple task well (say, reading an in-
teger from the console in an uncrash-
able manner) and can be used any-
where, building upon each other. To
be useful, these "software tools" (see
the excellent text of the same name by
Kernighan and Plauger) must make
no assumptions about their environ-
ment and be as general as possible.
This means that all communications
are via their parameter list; no global
variables are used. Because these tools
tend to be used frequently in a pro-
gram, two or more invocations may
be active at one time. Thus, they re-
quire an environment that supports
recursion, where each call of the pro-
cedure creates a separate data area on
the program stack.

Pascal/MT + has its roots in Pascal/
MT, which was a subset of Pascal de-
signed to replace assembly language
in real-time control applications, a
task it performed admirably. In this
environment, the time and code space
overhead of recursion was unneces-
sary, and Pascal/MT forbade recur-
sion unless you set a compiler option
to enable it. Moreover, type and
range checking had to be explicitly
turned on, since they were often a
nuisance.

Unfortunately, these practices persist.
I guess it's difficult to explain to a non-
Pascaler why defaulting type and
range checking to off is like the default
state of your auto accelerator being

full throttle; suffice it to say that it is
not a way to encourage program reli-
ability. Moreover, the /MT+ recur-
sive environment lacks one important
feature: a reliable way to handle ex-
ceptions. While the GOTO works fine
across procedures in a nonrecursive
environment, Pascal/MT's stack dis-
cipline does not support a reliable
GOTO when it is operating recur-
sively, giving you no way to get out
quickly from a large nest of proce-
dures when an error or exception oc-
curs. This violates the ISO standard
and is a serious flaw. (There is an
EXIT procedure, but this only gets
you out of the current procedure, and
it also does not work in recursive
mode.)

Separate compilation

With version 1.5, UCSD Pascal intro-
duced an extraordinary mechanism
for developing software tools, the
UNIT. A UNIT is a separately com-
piled module intended for use by
other programs, which contains an
explicit, public INTERFACE section
followed by an IMPLEMENTATION
portion that is private and can be
modified without disturbing the
linkage to the outside world. When a
UNIT is declared in a host program,
the compiler automatically reads in
the INTERFACE and treats it as if it
were part of the host program declara-
tion section, saving oodles of typing
and providing automatic type check-
ing. Thus, not only can UNITs be
maintained independently of their
host programs, they can be sold to
others in object form as software
tools.

Separate compilation is also sup-
ported under Pascal/MT, under the
syntax:

MODULE <name>;
< label, const, type, var declara-
tions >
< procedures and functions > ;

MODEND.

The $E- compiler option allows you to
declare portions of your code as pri-
vate and unavailable to the linker.
Unfortunately, if you use variables or
procedures/functions from other
modules or programs, they must be
declared EXTERNAL in the host pro-
gram, and no type checking or param-
eter list verification is done. Thus, if
you are compiling a large program in

(continued next page)
23

and contained grammatical errors,
but I could always find the informa-
tion I needed quickly. One oversight:
the names of run-time procedures and
functions are provided for your use,
but no parameters or function types
are provided, making them useless.
The /MT + manuals assume familiar-
ity with Pascal and could not be used
by themselves if you're a beginner.

Conclusion

Writing a compiler is always an enor-
mous task, but trying to squeeze
native-code Pascal into a 64K ma-
chine is stupendous. Mike Lehman re-
ports that the code generated by the
compiler has consistently worked
well; I have no reason to doubt him
He is to be commended for a super!
effort.

Clearly, the task of making the Pas
cal/MT + system truly robust still lies
ahead. For now, the user will have get
used to the usual idiosyncracies, a vic-
tim of an impressive array of facilities
that work well if you program in the
manner of the author.

I prefer the UCSD system, particu-
larly the factor-of-ten speed advan-
tage afforded during compilation.
Even Apple Pascal allows compile/
link/run/edit phases four times faster
than /MT. Among CP/M-based Pas-
cals, however, Pascal/MT + offers
respectable compilation times along
with rapid program execution (pro-
vided your program isn't i/o bound,
which is usually the case). The Speed-
Programming Package will assist you
in writing small-to medium-size pro-
grams and is of less use with larger
programs, although you can run pro-
gram modules through the syntax and
variable checkers if they are syntac-
tically complete.

The SPP fast compiler would be
greatly aided by being reconstructed
as a one-pass compiler optimized for
speed. I wouldn't mind recompiling
programs that I knew worked with a
slower compiler in order to obtain
smaller object files or faster execution.
However, I suspect that speed will
have to await 16-bit micros with
larger address spaces.

pieces and want each part to have ac-
cess to your global variables, you
have extra typing and praying (that
you've used variable types accurately)
to do.

The suggestion from MTMicroSYS-
TEMS was to put global types in a
separate INCLUDE file (since types do
not have to be declared as EXTER-
NAL), then a second file containing a
re-edited version of global variables
with EXTERNAL added. EXTERNAL
procedures and functions might be ad-
ded to yet another INCLUDE file,
since any EXTERNAL procedure and
function declarations not used are
simply ignored, although they con-
sume symbol table space.

Suggestion to improve the present
syntax: let the compiler read the real
global declarations under the influ-
ence of a compiler option telling it
that these names are all external.

Program overlays and memory
management

One of the nicest new features of ver-
sion 5.25 is direct support of program
overlays. You can declare up to 16
areas in memory, each of which can
contain up to 16 overlays, for a total
of 256 possible program segments.
Moreover, when you set up the linker
to include the run-time library, it
keeps track of which run-time mod-
ules are present in the host program
and does not add them to overlay
modules. And /MT + keeps track of
which modules are in memory, so that
if one module is called repeatedly, it is
not reloaded each time.

Not bad.

Because 8080/Z-80 processors do not
readily allow location-independent
machine code, you must manually fig-
ure out where each portion of the pro-
gram (code and data for each module)
is to go. This is done by compiling
each module, then test linking it to de-
termine code and data size. Then set
up your memory map, and relink each
module to its actual location.

CPMUG NEWS
CPMUG wishes to congratulate
the SIG/M Users Group for their con-
tribution to users of public do-
main so f tware t h roughou t the
wor ld .

In a spirit of cooperation, SIG/M
has endorsed the incorporation of
their volumes into CPMUG.

Welcome to all SB-80 Users: you
may now take advantage of the
ent i re CPMUG Lib ra ry of 64
volumes.

Ordering
From CPMUG
CP/M Users Group library diskettes
are available from The CP/M Users
Group, 1651 Third Avenue, New
York, New York 10028. As of this
date, the Library contains 64 volumes
of software available on 8" IBM
single-density CP/M diskettes, or on
North Star diskettes readable by users
of double-density CP/M 1.4, double-
density CP/M 2.2, quad capacity
CP/M 2.2.

The complete CPMUG catalogue is
available for $6 prepaid to the U.S.,
Canada and Mexico. The cost to all
other countries is $11 prepaid.
Members receiving the material are
reminded that software contributions
are necessary if the exchange program
is to prosper. Software contributions
are gladly received for inclusion into
the Library with the understanding
that the contributor is authorized to
make the material available to others
for their individual non-commercial
use.

Please write for more information to
CPMUG at the address above.

Documentation

I found Pascal/MT + to be clearly ex-
plained in its accompanying manuals.
The prose was occasionally clumsy

Did your subscription start last No-
vember or December? See page 39.

24 Lifelines, November 1981

CPMUG Catalogues:
Volumes 55, 56, 57, 58, 59, 60, 61, 62, 63, and 64
CPMUG VOLUME 55

Original Adventure run time implemented for CP/M

NUMBER SIZE NAME

-CATALOG.055
ABSTRACT.055
UGFORM.LIB
SIG/M.LIB

COMMENTS

CONTENTS OF CPMUG VOL. 55
NOTES ON ADVENTURE
SUBMITTAL FORM
SUBMITTAL FORM

55.1 39K AD.COM
55.2 63K ADVENTUR.MSG
55.3 2K ATAB.DAT
55.4 4K COMMON.DAT
55.5 IK KTAB.DAT
55.6 IK LTEXT.DAT
55.7 IK RTEXT.DAT
55.8 IK STEXT.DAT
55.9 5K TRAVEL.DAT

CPMUG VOLUME 56

Original Adventure source code implemented for CP/M

NUMBER SIZE NAME

-CATALOG.056
ABSTRACT.056
UGFORM.LIB
SIG/M.LIB

56.1 28K ADINIT.COM
56.2 13K ADVENSUB.FOR
56.3 5K ADVENT. FOR
56.4 74K ADVENTUR.DAT
56.5 29K ADVINIT3.FOR
56.6 47K ADVMAIN. FOR
56.7 5K INSUB. FOR
56.8 5K MAINSB.FOR

COMMENTS

CONTENTS OF CPMUG VOLUME 56
IMPLEMENTATION NOTES
SUBMITTAL FORM
SUBMITTAL FORM

CPMUG VOLUME 57

Expanded ADVENTURE 8080/Z80 version supercedes SIG/M volume 3. This version will sense the type of processor
(Z80 or 8080) and take advantage of Z80 instruction set if available.

NUMBER SIZE NAME COMMENTS

-CATALOG.057 CONTENTS OF CPMUG VOL. 57
ABSTRACT.057 NOTES ON EXPANDED ADVENTURE
UGFORM.LIB SUBMITTAL FORM
SIG/M.LIB SUBMITTAL FORM

57.1 36K ADV.COM
57.2 105K ADVT.DAT
57.3 31K ADVI.DAT
57.4 4K ADVI.PTR
57.5 15K ADVT.PTR (continued next page)

Lifelines, Volume II, Number 6 25

CPMUG VOLUME 58

Miscellaneous CP/M Utilities
NUMBER SIZE NAME COMMENTS

58.1 60K

-CATALOG.058
UGFORM.LIB
SIG/M.LIB

3740UTIL.ASM

CONTENTS OF CPMUG VOL. 58
SUBMITTAL FORM
SUBMITTAL FORM

Copy CP/M to and from 3740 format
58.2 8K 374OUTIL.DOC Copy CP/M to and from 3740 format
58.3 2K BDOS-PAT.ASM Make user 0 (CP/M 2.X) public
58.4 7K BMAP7/11.ASM Print allocation map

58.5 IK

“ SOURCE “

CCPPATCH.ASM

CPMUG VOL. 47 (A.K.A. FMAP7/11.ASM on some disks; otherwise
-identical
Make drive A: default for .COM files

58.6 4K CHANGE.ASM ALS-8 to CP/M converter (DR. DOBBS)
58.7 8K CRCK3.ASM CRC check on a file

58.8 5K
“ SOURCE “
DIRFIX.ASM

CPMUG VOL. 46 - identical.
Rids attribute bits for 1.4 compatibility

58.9 9K DIRSIO/l.ASM Sorted DIR with SYS and MP/M options
58.10 IK DOWHILES.LIB Macro lib. used by 58.1
58.11 16K DU-8/12.ASM Update of CPM USER GROUP 40.20

58.12 8K
** SOURCE **
DUPUSR2.ASM

CPMUG VOL. 46 - identical.
Create duplicate directory entries w/new user #

58.13 4K EQUATES. LIB Macro lib. used by 58.1
58.14 2K FILPRINT.ASM Turn .TXT into .COM
58.15 27K FINDBD37.ASM Update of INTERFACE prgm to lock out bad blocks
58.16 9K FMAP6/12.ASM Update of CP/M USER GROUP 40.24
58.17 16K MACROS.LIB Macro lib. used by 58.1
58.18 2K NCOMPARE.LIB Macro lib. used by 58.1
58.19 IK PG0EQU.ASM Part of 58.9 DIRSIO/l.ASM
58.20 2K SELECTS. LIB Macro lib. used by 58.1
58.21 IK SURVEY.COM List disk, memory use, and other parts

58.22 13K
** SOURCE **
SURVEY3.ASM

CPMUG VOL. 46 - almost identical (1 byte off).
List disk, memory use, and other parts

58.23 IK

** SOURCE “

SYMSTACK.LIB

CPMUG VOL. 46 - conditional assembly on this disk I.M.S. controller;
version on VOL. 46 selects the TARBELL controller.
Macro lib. used by 58.1

58.24 IK WHENS.LIB Macro lib. used by 58.1
58.25 8K XDIR6/28.ASM Sorted directory with sizes

CPMUG VOLUME 59

8080/8085, Memory, iCOM Disk Controller diagnostics
NUMBER SIZE NAME COMMENTS

-CATALOG.059 CONTENTS OF CPMUG VOLUME 59
UGFORM.LIB SUBMITTAL FORM
SIG/M.LIB SUBMITTAL FORM

59.1 14K CPUDIAG.ASM CPU test diagnostics for 8080 and 8085
59.2 2K CPUDIAG.DOC CPU test diagnostics for 8080 and 8085
59.3 12K MEMDIAG.DOC Memory diagnotics
59.4 34K MEMDIAG.ASM Memory diagnostics
59.5 73K 3712DIAG.ASM iCOM single density disk controller diagnostic
59.6 93K 3812DIAG.ASM iCOM double density disk controller diagnostic
59.7 2K 3X12DIAG.DOC iCOM disk controller diagnostics
59.8 4K CP/M-NET.MSG Proposed networking of user groups

26 Lifelines, November 1981

CPMUG VOLUME 60

6502 Simulator- Reference Dr. Dobbs 8/80
6502 Zapple monitor

NUMBER SIZE NAME COMMENTS

-CATALOG.060 CONTENTS OF CPMUG VOL. 60
ABSTRACT.060 DESCRIPTION OF EACH MODULE IN THE 6502 SIMULATOR

UGFORM.LIB ***** NO SPACE -AVAILABLE *****
***** ON VOLUMES 55 - 59.*****

60.1 UK ZILASM.COM 6502 Simulator
60.2 5K ZX65.COM
60.3 98K ZX65R.PRN
60.4 39K ZX65R.ZSM
60.5 15K ZXART.DOC
60.6 9K ZXHINTS.DOC
60.7 23K ZXLDR.PRN
60.8 7K ZXLDR.ZSM
60.9 IK ZXTAB1.DOC
60.10 IK ZXTAB2.DOC
60.11 IK ZXTAB3.DOC
60.12 IK ZXTAB4.DOC
60.13 2K CONCOD.LIB Control codes for 6502 Zapple
60.14 IK ZAPMON.MOS Zapple monitor for 6502
60.15 5K ZAPMON.HEX
60.16 UK ZAP3.INS
60.17 3K ZAP5.INS
60.18 3K ZAPI. INS

CPMUG VOLUME 61

Bulletin Board Related Software System
File transfer utilities
CP/M utilities

NUMBER SIZE NAME COMMENTS

-CATALOG.061 CONTENTS OF CPMUG VOLUME 61
UGFORM.LIB SUBMITTAL FORM
SIG/M.LIB SUBMITTAL FORM

BULLETIN BOARD RELATED SOFTWARE
61.1 23K DCHBYE55.ASM Remote console for DC Hayes Modem
61.2 3K FLIP-8/8.ASM Switch remote console to originate mode
61.3 5K TAG.ASM Set Fl bit
61.4 9K MLIST34.ASM Type command w/16K buffer
61.5 45K MODEM926.ASM Update of CP/M User Group 40.28
61.6 21K PLINK925.ASM Update of CP/M User Group 19.4
61.7 2K USER-8/8.ASM Replaces CP/M User CMD on remote CPU
61.8 20K XMODEM32.ASM DC Hayes support

(continued next page)
27Lifelines, Volume II, Number 6

CPMUG VOLUME 61 (continued)
COMMENTSNUMBER SIZE NAME

61.9 4K PURGE.ASC Requires MBASIC
61.10 20K RIBBS.ASC Requires MBASIC

FILE TRANSFER UTILITIES
61.11 7K MIC-XFER.ASM Data transfer between Micropolis CP/M 1.4 and 8" systems
61.12 7K MIC-XFER.DOC Data transfer documentation
61.13 3K XFER5-8.ASM Transfer files between 5" and 8"
61.14 3K XFER8-5.ASM Transfer files between 5" and 8"
61.15 5K V2FORMAT.ASM Versafloppy system

CP/M UTILITIES
61.16 9K MENU.ASM Creates menu of all .COM and .BAS files
61.17 5K MEM-MAP. ASM Use to map RAM/ROM
61.18 8K MOVE6/12.ASM Single drive copy program
61.19 8K RELDUMP.ASM Dump Microsoft .REL files
61.20 IK SAP-FIX. DOC Patches for CP/M User Group Vol. 19.8
61.21 5K TEXCLEAN.ASM Clear bit 7 of a test file
61.22 2K TPA3. ASM Computes size of TPA
61.23 3K Z80EXT.LIB Extra Z80 Opcodes

CPMUG VOLUME 62

PASCAL and Communications related programs

NUMBER SIZE NAME COMMENTS

-CATALOG.062 CONTENTS OF CPMUG VOLUME 62
PASCAL RELATED PROGRAMS

62.01 IK BOOT. ASM Sample BOOT for PASCAL
62.02 3K BOOTER.DOC PASCAL documentation1 62.03 7K TEST. ASM Scan and load 8080/Z80 Pascal interpreter
62.04 8K PAS2CPM.ASM Format conversion
62.05 7K PASCAL.ASM Initialization of PASCAL system
62.06 17K PASCAL.COM
62.07 IK PASCAL.DOC
62.08 12K PASTOCPM Format conversion
62.09 IK PBOOT.ASM Utilities to initialize PASCAL system
62.10 4K PGEN.ASM
62.11 IK PGEN.COM
62.12 6K PINIT.ASM
62.13 2K READ.ME PASCAL startup documentation

COMMUNICATIONS RELATED PROGRAMS
62.14 5K CHAT13.ASM 2-way communications with remote caller
62.15 24K DCHBYE57.ASM Upgrade of remote console DCHBYE55 on CPMUG 61.01
62.16 46K MODEM5A.ASM Auto-dial and auto re-dial capability on DC Hayes and PMMI

modem boards
62.17 21K PLNK1018.ASM Upgrade of PLNK925 on CPMUG 61.6 and CPMUG 19.4 with more

modem types
62.18 4K NEWBAUD.ASM Switch BAUD rate on a remote PMMI to readjust modem speed
62.19 20K RBBS22.ASC Update of RBBS in CPMUG volume 61
62.20 6K RBBS22.DOC
62.21 9K RBSUTL22.ASC
62.22 8K MBOOT3.ASM Compacted version of MODEM for RECV only usage
62.23 24K XMODEM38.ASM Update of CPMUG 61.8 - remote CP/M to CP/M transfer

Lifelines, November 198128

CPMUG VOLUME 63

-CATALOG.063 CONTENTS OF CPMUG VOLUME 63
UGFORM.LIB SUBMITTAL FORM
SIG/M.LIB SUBMITTAL FORM

NUMBER SIZE NAME COMMENTS

63.01 2K AUTOX.ASM Forces a CP/M command from a user level
63.02 10K CPYFIL15.ASM Copy large files greater than 512K through PIP utility
63.03 UK CRCK10/6.ASM Upgrade of CRCK3 in CPMUG 58.7
63.04 9K DIRS1015.ASM Sorted directory from DIRS10/1 in CPMUG 58.9
63.05 3K DISPLAY.COM Similar to DIR/ED.COM using display commands only
63.06 3K DISPLAY.DOC
63.07 3K DISPLAYP.ASM
63.08 18K DU-10/26.ASM Update of disk utility in CPMUG 58.9
63.09 10K FIND3/18.ASM Multiple file search routine
63.10 29 FINDBD38.ASM Update to FINDBD37 for locating bad blocks of disk space in CPMUG

58.14
63.11 IK LISTGRPS.ASC List track and sector assignment for each group
63.12 10K MDIR8/17.ASM Master directory by users in alphabetic sequence
63.13 17K MFT45.ASM Dr. Dobbs single drive multi-file transfer program
63.14 7K MICXFER.ASM Micropolis and regular CP/M file transfer
63.15 5K MICXFER.DOC
63.16 9K NFMAP.ASM Sorted directory with option of writing file of names
63.17 14K NLIST.ASM Lists disk file on LST: device
63.18 17K SD-12/15.ASM Sorted directory with sizes
63.19 10K SECTOR.ASM Sector disk maintenance program
63.20 2K SHOWGRP.ASC Print track and sector addresses of groups
63.21 2K TERMTEST.ASM Terminal diagnostic program
63.22 3K USERLST.ASM Patch for displaying current user level within CP/M prompt
63.23 8K VLISTU.ASM Variable speed TYPE routine
63.24 4K WHICH.ASM Displays present CP/M release level
63.25 8K MIKEBIOS.ASM Flash Writer I/O driver

CPMUG VOLUME 64
Games, disassembler, North Star Basic patch for CP/M, CDOS simulator, and other utilities.
NUMBER SIZE NAME

CATALOG.064
UGFORM.LIB
SIG/M.LIB

COMMENTS
CONTENTS OF CPMUG VOLUME 64
SUBMITTAL FORM
SUBMITTAL FORM

64.01 6K LANES. BAS Games using MicroSoft Basic
64.02 2K JOURNAL. BAS
64.03 15K GAMMONB.BAS
64.04 3K BLACKBOX.BAS
64.05 IK BOGGLE. BAS
64.06 UK GAMMON.H19 Heath terminal adaptation
64.07 8K NIM1.H19
64.08 5K OTHELLO.H19
64.09 12K STARWAR2.H19
64.10 17K ALS8CPM.ASM Converts Processor Tech assembler files to CP/M format
64.11 IK DIV16B.ASM 16 bit division by 8 bit divisor
64.12 5K DSIM.LIB CDOS calls for CP/M
64.13 22K NSCPM48.ASM Patches to run North Star Basic under CP/M
64.14 8K NSCPM48.COM
64.15 IK RETURN48.COM
64.16 33K REZ.ASM RESOURCE resurrected with .ASM
64.17 7K REZ.COM A nifty 8080 disassembler
64.18 26K REZ.DOC Modified for Z80 TDL op codes
64.19 36K REZ.Z80 Modified for Zilog op codes

Lifelines, Volume II, Number 6 29

Still More Random Numbers

possible shufflings. Only 12 are actually possible using
this algorithm, with the ordering 2143 the most likely
(11/81 or approximately 13.58%). This same pattern will
hold true for all deck sizes. A necessary, but not sufficient,
condition for a correct algorithm is that the number of
possible orderings must be a multiple of the number of
theoretically possible orderings generated. For n cards,
the number of possible orderings generated by this
algorithm is (n — l) n , which is not a multiple of the
number of theoretically possible orderings (n!). This auto-
matically excludes the present algorithm.

The place where the author made his mistake was in point
#2 of his description of an efficient shuffler — "The posi-
tion of each card must change at least once." There is no
reason why a card cannot be left in its original order.
However, simply eliminating the IF-statement (line 560)
does not make the algorithm correct — although it does
make all shuffled decks possible, some are more likely
than others. This algorithm has n n possible orderings,
which still is not a multiple of n!.

Editor's Note: Two more letters have arrived on the sub-
ject of random numbers.

October 6, 1981
To the Editor:

Developing correct and efficient algorithms for random
number generation and their use are among the most diffi-
cult of computing problems. Their difficulty lies in that
such algorithms are difficult to test. Many algorithms for
the generation and use of random numbers appear intu-
itively correct but are, in fact, far off the mark. Recent ex-
amples of this have appeared in Lifelines. I hope to correct
one of these.

In the October 1981 issue, the article by Bill Burton, "Bet-
ter Random Numbers," contains a reasonable, but incor-
rect routine for shuffling a deck of cards. That this algo-
rithm is incorrect can be seen easily by considering an ex-
ample of a deck with three cards (numbered 1, 2, and 3).
The subroutine for shuffing this deck becomes

One solution (perhaps not the best) is to modify a correct
algorithm to be efficient. Consider how you might shuffle
the deck if you are given a list of random numbers and are
not allowed physically to shuffle the deck. The algorithm
might look like:

1) Number the unshuffled deck in any order
2) Choose a card at random from the unshuffled deck

and put it in the shuffled pile.
3) The unshuffled deck is reduced by 1. Repeat 2) until

no cards remain.

540 FOR 1=1 T O 3
550 J= INT(RND*3)+1
560 IF I = J THEN 550
570 SWAP A (I) , A (J)
580 N E X T I
590 RETURN

The function RND is the random number generator from
BASIC-80 and returns a number in the range 0 < RND < 1,
and the vector A contains the card numbers.

The actual action for this subroutine is diagrammed be-
low. On the first pass through the FOR-loop, there are
two possible outcomes — 321 or 213. On the second pass,
321 can become 231 or 312, and 213 can become 123 or
231, so the second pass can produce 231, 312, 123, or 231.
The third and final pass has eight possible outcomes: 132,
213, 213, 321, 321, 132, 132, or 213. Combining the dupli-
cate outcomes, this becomes 3 of 132, 3 of 213, and 2 of
321, each equally likely. Therefore, 37.5% of the decks
shuffled will have the order 132, a like amount will have
the order 132, and the remaining 25% will have the order
321. The orders 123, 321, or 231 are not possible. If we
choose the "top card," we are not as likely to choose a 3 as
either of the other two cards.

An example with a deck of four is diagrammed below:

Unshuffled 1234 124 24 2
Shuffled 3 31 314 3142

Original First Second Third Final
Deck Pass Pass Pass Pass

While this requires two storage areas, unshuffled and
shuffled, we can see that as the unshuffled deck is de-
creased, the shuffled deck is increased. This suggests that
we might be able to use the same storage area for both
decks. An example might look like:

Deck 12 3 4 3 2 14 3 1 2 4 3 14 2 3 142

S U S U S U S U S U
Original First Second Third Final

Deck Pass Pass Pass Pass

Original Deck

First Pass

Second Pass

Third Pass

123.

'213321

231 312 123 231

132 213 213 321 321 132 132 213

S = Shuffled Deck U = Unshuffled Deck

At the first pass 3 is swapped with 1. This is OK since the
order of the unshuffled deck does not affect the shuffling
process. This has the effect of leaving all the unshuffledFor a deck of 4 cards (1, 2, 3, 4), there are 24 theoretically

Lifelines, November 198130

cards in the upper part of storage.

For a deck of 52 cards the subroutine becomes

540 FOR 1=1 T O 5 1
550 J= INT(RND*(53- I))+ I
560 SWAP A (I) , A (J)
570 N E X T I
580 RETURN

Notice that we need to go through the loop only 51 times
(one less than the number of cards in the deck). This is
because when we reach the last card there is only one
choice. The program is shorter and will execute slightly
faster than the incorrect code given by Bill Burton. Notice
that the number of possible orderings is n!, which is equal
to the number of theoretically possible orderings.

The moral of this story is that extra care must be used in
designing and testing algorithms involving random num-
ber generators.

Sincerely,
Ted H. Emigh
Assistant Professor of Genetics and Statistics
North Carolina State University

Sept. 3, 1981
To the Editor:

I did miss the intent of James R. Reinders' assembly
language program for random numbers as explained in

the answer to my letter last month. However, I must ex-
plain that I feel very confident in my ability to do most
anything in MBASIC but also feel relatively inadequate in
machine language. This also appears to be the position of
the majority of microcomputer software hackers. When a
routine will not take a measurable amount of operating
time in the higher level language, I think that is the way to
go.

Consequently, I took another look and refined my rou-
tines to allow the kind of randomizing that would be re-
quired by the long running program needing several ran-
dom numbers.

The programmer knows the total number of random
numbers he will require in a program. I have called this
variable RAND.TTL. In the interpreter, he can dimension
the array dynamically but if using BASCOM, he will have
to dimension with an integer value. The first GOSUB sets
up a list of randomly chosen seeds for the RANDOMIZE
function.

Line 200 will get a random number and increment the list
index. The next time you need a random number, GOSUB
200 and you randomize again with a new seed...and on,
and on, and on up to the number selected at RAND.TTL.

Line 130 is a REPEAT-UNTIL loop for MB80 which loops
forever looking for the space bar.
Bob Kowitt
The Computer Consultant

10 RAND.TTL=10 : DIM RAND. NO (RAND. TIL)
20 GOSUB 120 ' ge t enough random seeds
30 L=1 : GOSUB 200 ' ge t f i r s t random number
40 ' more program
50 GOSUB 200 ' ge t another
60 z more program
70 GOSUB 200 ' ge t another
75 ' e t c , e t c , e t c up to RAND.TTL
90 '
100 END
no **********************************
120 N=RND: PRINT: PRINT
130 FOR K=0 TO -1 STEP -1:K=(INKEY$=" ") : GOSUB 170 : NEXT
140 FOR K=1 TO RAND.TTL : GOSUB !&) : RAND.NO(K)=INT(N) : NEXT
150 RETURN
160 ' 1 1 I I I I I I I I I I I Ml -H- I I I I I I I I I I I H I I I
170 N=N*2 : IF N>32000 THEN N=N/3
180 RETURN
190 ' I I I I I I I I I I I I H I ITH-i I I I I I I I I I I I I I I
200 RAND0MIZE(RAND.N0(L)) : PRINT RND : L=L+1 : RETURN

Notice

Letters, tips and articles are welcomed
from all our readers, but we particu-
larly appreciate them when they ar-
rive in machine-readable form.

Unless the sender specifies otherwise,
we assume that all material submitted
is intended for publication and that its
transmission to us constitutes permis-
sion to publish. Unless other arrange-
ments are made, any such material be-
comes the property of Lifelines Pub-
lishing Corporation.

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Lifelines, Volume II, Number 6 31

Product Status Reports
Automatic multi-item sorting is sup-
ported for any set. The sorting can be
declared in mixtures of ascending and
descending order.

QRS, RTL, and DMU are available as
add-ons to MDBS III. QRS now has a
language syntax consistent with those
of earlier QRS versions. Sold with
QRS will be a separate program sup-
porting interactive DML, because the
initial version of QRS will not include
these features. The Design Modifica-
tion Utility provides utilities to aid
modification of schemas. RTL now
provides automatic logging-in for
multi-user environments.

Data item specifications allowed in
earlier versions are permitted in this
one, except for logical and depending-
on items. Logical items can be replac-
ed by unsigned items, and string and
binary items of variable length replace
depending-on items. Data types
allowed are: integer, unsigned integer,
b ina ry , real, in te rna l decimal ,
character, string, time and date.
Several types are automatically com-
pressed. Up to 65,535 items per record
type are permitted; up to 255 record
types are allowed per data base
schema. Recursive and multiple
owner/member sets are supported,
and fixed set retention can be
declared. Multiple ascending and
descending sort keys per set are per-
mitted; sorting can be performed on
on the record type names and on
various data items.

User passwords are part of a data
security system which includes data
enc ryp t ion . In s t ead of access
levels, any combination of 16 access
codes can be specified, providing up to
65,535 different codes which can be
assigned to a user, data item, set, or
area.

Some additional commands have been
added to the Data Manipulation
Language (DML) including com-
mands to set currency indicators to
null, and to set user definable currency

indicators. The latter are intended for
traversing a complex data base struc-
ture.

Boolean operations are now sup-
ported, with AND (for set intersec-
tion) and XOR operations. These are
useful for obtaining record occur-
rences satisfying two or more selection
criteria.

MP/M II
by Digital Research, Inc.

MP/M II is a new version of the multi-
user operating system, designed for
microcomputers with 8080/8085 or
Z80 processors. The modular design
includes a Terminal Message Pro-
cessor (TMP) to read the user's com-
mand line, a Command Line Inter-
preter (CLI) for loading programs,
BDOS, XDOS, and XIOS (Extended
Input/Output System). MP/M resides
in less than 26K of memory, 13K of
which must be common to all users.
Total size is determined by the number
and type of peripherals supported,
and the resident system processes in-
cluded when the system is generated.

MP/M II provides upward com-
patibility with CP/M, date and time
stamps, password protection, 16
logical drives managing up to 512
megabytes, error handling, multiple
printer support, CP/NET compatibili-
ty. It can manage up to 400K bytes of
RAM, with 16K of common memory
required for the nucleus of the
operating system.

PAS-3 Medical
Version 1.77

This version is intended to fix all
known bugs and has improvements in
presentation of data on the screen. It
permits the user to specify which
drives the program and data will be
on. This allows the system to be used
with the Altos hard disk and other
systems that have their Hard Disk
starting at a drive other than A:.

New Versions
MDBS III

by Micro Data Base Systems, Inc.
This major update features im-
provements in speed, portability, flex-
ibility and physical storage control. A
proprietary access algorithm increases
access speed for large sorted sets in
moderate to large data bases.
A multi-user option has been added,
permitting several users to access a
data base concurrent ly . Record
lockout is managed by the system,
passively and actively. MDBS III is
configured to run with CP/M-
compatible MP/M and UNIX-type
operating systems.

This system was developed in two
forms; one is an assembler implemen-
tation designed for microprocessors
(8080/8085, Z80 and others). The
other is written in C, for larger
systems with less memory constraint.
Applications packages developed us-
ing the first form of MDBS III can be
transported to 16-bit micros and some
minis, including the PDP-11.

Physical placement of records can be
declared for up to sixteen physically
distinct data base areas. A designer
can assign occurrences of a record
type to one or more areas, and can
declare how records are to be placed
within an area or areas. A clustering
option permits a group of records
which are related (via a set) to be ac-
cessed more speedily.

Selective linking is supported, depen-
ding on the host language, so that on-
ly the routines needed by an applica-
tion program are resident in main
memory. This frees room for page
buffers.

Data is maintained in a common inter-
nal representation regardless of the
host language or languages used dur-
ing data base creation and modifica-
tion. Any available host language can
be used for read or write access to a
given data base.

Lifelines, November 1981

Plink
Version 3.28
The bugs listed below have been
repaired with this new version:
1. When the blank common .BLNK.

was zero bytes long and contained
a symbol, error #30 would result
(e.g. see example 3 in Appendix D
of the manual). This problem has
been corrected.

2. The /ACTUAL option did not
work when used with Microsoft
format files; this has been cor-
rected. Three new error numbers
have been added:
63-Microsoft Fixup error (in-
dicates Plink-I or compiler bug).
64-Common blocks were overlap-
ped in memory by the /LOCATE
option.
65-Too many common blocks in
module (maximum is 251).

3. Pascal MT files may now be link-
ed.

4. Plink normally places some code
at the front of the program to set
the Z80 stack pointer to the top of
available memory. This code now
uses only 8080 instructions so that
programs may be generated for
these machines.

5. Plink now saves the X and Y
reg i s t e r s when ca l l ing the
operating system: some CP/M
look-alikes smash these registers
when called by a program.

6. Some versions of the Digital
Resea rch PL / I -80 compi l e r
generate invalid .REL files when
an empty string is declared: 256
garbage bytes are written to the
.DATA, segment causing the
linkage editor to overwrite the
memory assigned to the following
segment. This usually doesn't
matter since the next segment is
typically from a module that
hasn't been loaded yet, but the
problem may surface if the
/LOCATE option is used, causing
segments to be allocated out of
order. Symptoms of this problem
are fixup errors or smashed code
in the program.

7. Another PL/I-80 problem has
been fixed: modules having no
code in them are now handled cor-
rectly. These would some times
cause fixup errors or missing code
or data in the output file.

8. Common blocks were not handled
properly if they had the same
name as a module: each instance
of the common was assigned a dif-
ferent memory area. This

Lifelines, Volume II, Number 6

has been remedied. Microsoft ap-
parently handled this problem in
their FORTRAN by setting the
high order bit in the first character
of each common block name. Un-
fortunately, this means that
Microsoft FORTRAN and BASIC
modules may not be combined in-
to the same program because the
new BASIC compiler does not set
the bit. Plink can match the com-
mon names properly.

Problems have been reported with
l i nk ing modu le s p roduced by
Microsoft's new BASIC compiler ver-
sion 5.3. Plink-I can't link these with
the runtime module: the /O switch
must be used at compile time. In addi-
tion, some special options must be
used.

The problem is that the initialization
code in these BASIC programs at-
tempts to clear the blank common
(.BLNK.) and counts on having the
data segment for the module ('BASIC)
immediately following .BLNK. in
memory, in order to determine its en-
ding address. Plink normally moves
.BLNK. to the end of the program so
that FORTRAN programs can access
free memory; therefore, the clearing
routine wipes out the operating
system.

To correct the problem, enter
LOCATE .BLNK. =110, 'BASIC =110

at the end of the Plink input com-
mand, and do not use blank common
in the BASIC program: give each com-
mon block a name. Alternatively,
locate 'BASIC up high enough to
reserve the needed amount of space in
.BLNK. The memory map should be
checked to make sure that 'BASIC
follows .BLNK. in memory before ex-
ecuting the program: anything in-
advertently placed between the two
will be smashed.

The Microsoft relocatable file format
has become an industry standard for
Z80 CP /M compi l e r ou tpu t .
However, several manufacturers are
selling compilers which output files
that look like Microsoft's but actually
contain subtle differences. Plink can
handle some of these, but others will
not work. Also, Microsoft periodical-
ly makes minor changes to the format
so as to suppor t new language
features.

The following list shows which com-
pilers have been checked out with
Plink Version 3.28: 1) Microsoft
COBOL 4.01 (in this version the SEC-
TION statement may not be used),
FORTRAN 3.31, BASIC 5.3 (see com-
ments above); 2) Cromemco COBOL
3.01; 3) Digital Research PL/I-80 1.3
(the indexed .IRL files are not sup-
ported - they have to be converted to
normal form with the LIB program);
MT Microsystems' Pascal MT (.ERL
files designed to be input to the
disassembler are not supported);
Ithaca Intersystems' Pascal/Z 3.0. If a
compiler you wish to use is not on the
list, insure that it outputs a format
compatible with a listed one, or con-
tact your software distributor.

Plink-II
Version 1.10

Here are the bugs fixed in this new
version:
1. Some versions of the PL/I-80 com-

piler generate invalid .REL files
when an empty string is declared.
See number 6 above under Plink I.

2. If more than two undefined
segments exist (warning #55),
Plink-II would die with diagnostic
error #164. Now programs may be
linked with undefined segments:
they are ignored. This is useful for
tasks such as the creation of over-
lay structures that are used in many
programs where not all of the
segments mentioned in the struc-
ture are used in each program.

3. DEFINE < symbol > = < local
variable > would cause a syntax
error; this has been corrected.

4. Common blocks would not be
handled properly if they had the
same name as a module: each in-
stance of the common was as-
signed a different memory area.
This situation has been remedied.
See number 7 above under Plink-I.

5. The overlay loader no longer in-
correctly links in a .COM pro-
gram when the LOCATE com-
mand is used.

A number of additional features are
included in the new version. When the
LOCATE statement is used in a .PRG
program a new section is created.
Since only the main section is loaded
by the operating system when the pro-
gram is executed, Plink-II includes the
overlay loader into the program to

(continued next page)
33

load the other section before execution
of the program begins. This action
may now be inhibited by using the
new PAD option provided with the
LOCATE command. For example,

LOCATE 3000, PAD
causes the previous section to be filled
out until it reaches address 3000. In
this way, the next section is forced to
be adjacent to the previous one and
will be loaded at the same time from
disk: the overlay loader is not re-
quired.

The COMMON command has been
added, and may be used to define the
size of a common block to be larger
than the definition of the common
provided by any module. It also per-
forms the function of the SEG com-
mand by placing the common block in
the current section, the syntax is
COMMON < name 1 > = < sizel > ,
<name2> = <size2> , etc. For ex-
ample,
COMMON Cl = 100, C2 =#1*5

The COMMON command may not be
used on a .DATA, segment or error
#18 will result. Also, the COMMON
and CONCATENATE statements
should not be used on the same com-
mon or the results will be unpredic-
table.

The various overlay loaders selected
via the DEBUG and 18080 commands
are now combined into a single library
file called OVERLAY.REL instead of
being in separate files. Each has a dif-
ferent module name: .OVLS. is the
standard loader; .OVLD. is selected
when the DEBUG command is used,
and .OVL8. when the 18080 command
is used. Older overlay .REL files
should be discarded: they will no
longer work.

Plink-II also has problems with link-
ing modules produced by Microsoft's
new BASIC Compiler. (See the notes
on Plink-I above.) If the /O switch is
NOT used in the BASIC compile, the
program is linked so as to use the run-
time support module, and no extra
Plink-II commands are required:
everything is sorted into the correct
order in memory. A .COM file must
be specified for output, overlays may
not be used, and the LOCATE, AC-
TUAL, and .DATA, commands
should not be used.

If the I/O option IS used, the SEG-
MENT command of Plink- II can be
used to specify that the named

34

segments are to be allocated memory
at the current load address. Older ver-
sions of Plink-II always put .BLNK. at
the end of the current section, but ver-
sion 1.10 will not do this if .BLNK. is
used in the SEGMENT command.
Plink-II will move all uninitialized
segments to the end of the section, and
.BLNK. and 'BASIC are normally
uninitialized, so the NOSORT com-
mand must also be used to inhibit this
action. To sum up, entering

SEGMENT .BLNK., 'BASIC NOSORT
into the Plink-II command will cause
the correct memory structure to be
generated.

PRISM
Version 2.0.1

Three bugs have been fixed in this up-
date.
1. If a duplicate key was encountered

on a key defined as unique while
adding a new record, the resulting
key contained the correct value
while the data record retained the
incorrect value. This caused the
wrong record to be retrieved when
accessed by that key. A fatal error
could also occur if an attempt was
made to delete the record or
change the incorrect key field.

2. Keys defined with numeric fields
containing a decimal point were
created one character too short;
leading digit may have been er-
roneously truncated.

3. Entry pattern was some times
displayed incorrectly for number
fields defined with no whole digits
(e.g., a field three digits long with
three decimal places).

This version has been enhanced by an
additional file storage mode, called
Extended (as opposed to Normal). The
storage mode controls how the data
records are constructed physically.
PRISM operation is the same in each
case.

Normal format is totally compatible
with standard CBASIC records, using
commas as field delimiters, and quotes
(") to denote string fields. In this way,
the data file may be read directly with
a CBASIC READ statement. Extended
format builds data records with no
commas or quotes by establishing
fixed positions for the fields within
each record. This makes all 254
characters of the record available for
storing data. An additional advantage
is that fields may contain imbedded
quotes.

Although extended format records are
not directly compatible with the stan-
dard CBASIC record format, they
may still be read with the READ LINE
statement. File storage mode may not
be altered once data is entered into a
file.

New Products
The products described here are
available from their authors, software
distributors, computer dealers, and
software publishers.

baZic
by Micro Mike's, Inc.

This Binary-Coded Decimal BASIC
interpreter uses the Z80 instruction set
and is designed to be about 40% faster
than North Star BASIC(with which it
is compatible) or Microsoft's BASIC
interpreter. It includes 8, 10, 12 and 14
digit precision, with software and
hardware floating point versions.

BaZic is supported by CP/M, North
Star DOS, and MicroDoz. It requires
a Z80 CPU, 32K RAM space, and a
minimum disk capacity of 80K. One
drive can be used. A cu r so r -
addressable terminal and CP/M 2.0 or
later are also necessary.

Level II COBOL
by Micro Focus Inc.

This implementation of the highest
ANSI standards for COBOL includes
the following language modules:
nucleus, table handling, sequential
I/O, relative I/O, indexed I/O, inter-
p rog ram communica t ion , and
sort/merge. Level II COBOL main-
frame application programs written to
ANSI 74 COBOL standards will be
portable to microcomputers with a
minimum of conversion.

Level II COBOL is available for 8086
processors equipped with a C com-
piler.

Dental 80/Medic 80
by The Systems Shoppe

These dental and medical accounting
systems includes interactive entry, in-

Lifelines, November 1981

teractive inquiry, a collection system
to remind the user of accounts which
are in arrears, patient scheduling, pa-
tient registration, and patient history
retention. Records can be accessed by
patient name or account number.
Scheduling exception reports and den-
tal or medical records "pull" lists can
also be implemented. Follow-up con-
trol is also a design feature. Security
measures are intended to restrict infor-
mation access and to recover files in
the event of a power failure.

The following accounting reports are
supported: aged A/R report, pre-
authorized request control and report-
ing, past due and credit balance ac-
counts, patient statements, demand
patient statements, insurance state-
ments including ADA form, demand
insurance statements, production by
dentist and clinic or group, clinic
analysis, patient charges and account
balance, recall reminders and letters,
referring doctor or dentist reports,
daily revenue and production reports,
daily audit of all posted transactions
with cumulative A/R balance.

FORTH Application Modules
by Timin Engineering Company

This variety package of FORTH
source codes provides FORTH defini-
tions not previously published, along
with data structures, software devel-
opment aids, string manipulators, an
expanded 32- bit vocabulary, a screen
calculator, a typing practice program
and a menu generation/selection pro-
gram. Examples of r ecu r s ion .
< BUILD... DOES > usage, output
number formatting, assembler defini-
tions, and conversational programs
are supplied. A hundred screens of
documentation and a hundred screens
of software are on the disk.

The screens may be used with Timin
or other FIG FORTH.

Magic Typewriter
by California Digital Engineering

This package is intended to be an all-
purpose tool, comprising word pro-
cessing and database management fea-
tures. Word processing commands are
generally one word or mnemonics.
File deletes, renaming, block moves,
and search and replace are supported.
A line editor is included in the pack-
age.

Text formatting features allow odd-
even page headings, page numbers,
justification, centering, right or left
justification, and embedded format-
ting commands. Files can access other
files through embedded commands, or
sequential printing of files can be ac-
complished.

Record lengths in the database are
limited to 200 characters and the for-
mat is free form, with variable length
fields separated by semi-colons. Wild
card searches are allowed within the
reformatting provisions of the pack-
age. Printing can be done selectively,
based on the presence or absence of a
key string in a specific position.

An expanded version of this product,
Magic Typewriter 3, allows full com-
mand procedure files to be executed
from disk. Merging of two or more
files is also permitted, for mailings. A
special feature of Magic Typewriter is
its ability to automatically handle
standard film script format.

New Publications

Experiments in Artificial Intelligence
for Small Computers
by John Krutch
This is a practical book presenting

programs written in Microsoft Level II
BASIC, including game-playing pro-
grams and concentrating on problem
solving through reasoning. One pro-
gram stores data and makes deduc-
tions using it. A chapter is devoted to
natural language processing or verbal
communication.

Sams' Microcomputer Dictionary
by Charles J. Sippl
This dictionary includes more than

five thousand terms are described,
with drawings and photos included.
Appendices focus on microprocessor,
microcomputer markets, hand-held
computers, robotics, etc.

16-Bit Microprocessors
This is a survey-type book by a group
of authors, who have compared and
evaluated the following microproces-
sors: the 8086 (Intel), the Z8001 and
Z8002 (Advanced Micro Devices and
Zilog), the 9900 (Texas Instruments
and AMI), the LSI-11 (DEC), the
68000 (Motorola and Rockwell Inter-
national), and the 16000 (National
Semiconductor). Basic concepts are
explained and software benchmarks
with specifications for comparing pro-
cessors are provided. Addressing
modes, instruction sets, interfacing
and software examples are included.

Fileshare
by Micro Focus Inc.

Fileshare is an updating environment
for MP/M systems running COBOL
programs. It is available on a trial
basis. Files can be opened for
simultaneous updating and different
operations can be performed at the
same time in a multi-user environ-
ment. Each user's files are protected by
a mechanism which locks and unlocks
records within the files. This is per-
formed automatically by input and
output statements in the CIS COBOL
program. IBM 8100 protocol has been
employed in the development of
Fileshare.

Fileshare is supplied as a run time
system included in each application
program and as a central file server.
The server and each application exist
in separate MP/M environments.
Server and run time system com-
municate via a packet-based com-
munication protocol. CIS COBOL
and MP/M are prerequisites.

$
Lifelines, Volume II, Number 6

Bugs
dBase II
Version 2.02

You cannot comment out program
lines with the asterisk if they contain
ampersand variables. dBase will still
try to evaluate the line, causing an er-
ror. You also cannot put ampersand
variables after ENDDO and ENDIF.
Usually text on the same line after
these keywords is ignored. But when
the text contains ampersands, an error
is generated.

The record pointer may be lost if any-
thing is done in a loop between a
LOCATE and a CONTINUE. Use
SKIP instead to advance the record
pointer. For example:

(continued next page)
35

locate next 5000 for lname$"A"
store "N" to not found
do while . no t . eof .and. ! (notfound)='N /

display
@0,0 say " i s this i t ? " get not found
continue

enddo

will not work properly. Another anomaly is the way
DBASE can change the type of a variable.
store ' ' to condition
@0,0 say 'Condition ? ' get condition
locate next 5000 for &condition
do while . no t . eof

(do something)
continue

enddo

You will find if you examine the value of '&condition'
within the loop that it has been replaced with the boolean
value of the condition it represents, i.e., if the match has
been found, '&condition' will be equal to '.T.' , and if
not, it will be equal to '.F. z

If you are using a multi-key index to a single index file,
you must change a numeric field into its character string
equivalent.

I .E . , r a the r t han

INDEX ON f ie ldname+number to
index f i l ename

use

INDEX ON fieldname+STR(number ,6) to
indexf i lename

Using The Apple Corvus Module
With The Mirror Backup
1. Put the Corvus interface in slot 6.
2. Put the disk controller in slot 4.
3. Run "Bringup s4,dl", the APPLEDOS basic program.
4. The program will ask several questions with obvious
answers, and then you will get "BREAK in 205".
5. Type 205<CR> to erase line 205.
6. Type "Run to continue.
7. The program will print garbage on the screen. This is
the CP/M directory on the Corvus - no cause for alarm.
8. When you get the prompt back, run the BASIC pro-
gram "Mirror".

BASCOM-Compiled
Files Under CDOS
The Microsoft BASIC compiler run-time module does a
test of the operating system to determine which system
calls are legal. If the run-time module determines that it is
running under CP/M 2.0 or above, system calls 33 and 34
(read random, write random) will be used for random ac-
cess. Otherwise code will be generated to do this as in
CP/M 1.4.

The test is performed via a system call 12. In CP/M 2.x
this call returns the version number, always non-zero, in
HL. In CP/M 1.x, system call 12 lifts the head the of cur-
rent drive, and is presumed to always return 0 in HL. But
in CDOS, system call 12 (deselect the current drive) ap-
parently returns non-zero in HL.

Programs compiled with BASCOM (such as FPL) may
think when they run under CDOS that they are running
under a CPM 2.x as a result of this test, and generate sys-
tem call 33 which in CDOS is not a random read call. This
results in confusing error messages like "Can't open file' or
"File not found' the first time a read is attempted.

Microspell
Version 4.3

Invert is intended to allow the LEX file it inverts to reside
on any drive in the system, but only will look for the file
on the logged in drive.

PAS-3
Version 1.61

The manual states that the DUMP utility file will list the
patient data file in alphabetical order. In reality it lists the
patient file using ascending patient numbers.

In general, this applies to any program that uses CP/M
2.x random file I/O after testing for version number.

Lifelines, November 198136

Back Issues
Lifelines begins all new subscriptions with the upcoming
issue. However, you can order back issues, as available,
at the single copy price. Here is a list of the back issues and
their feature articles. (Of course all issues contain our reg-
ular features: New Products, New Versions, Bugs, Tips
and Techniques.) If you wish, you may use this page as an
order form and check the available back issues which you
would like. Or give us a call at (212) 722-1700. All orders
must be pre-paid, either by check, VISA, or MasterCard.
Checks must be in U.S. dollars, drawn on a U.S. bank,
and made payable to Lifelines Publishing Corporation.
The price for issues sent to the U.S., Canada, or Mexico is
$2.50 per back issue. For copies sent to all other countries
the price is $3.60. Some copies are available in Xerox
copies only. These are slightly higher: single copies are
$3.10 and $4.25 for foreign orders. These issues are de-
noted in italics.

VOLUME I

□ JUNE 1980 (Vol. /, #1):
BASIC Comp arisons-CBASIC by Bill Burton
The Undocumented Z80 Opcodes by Robert Halsall
DU Tutorial by Ward Christensen

□ JULY 1980 (Vol. Z, #2);
Special features on the CP/M Users Group, including

catalogs and abstracts
BASIC Comparisons-BASIC-80 by Bill Burton

□ AUGUST 1980 (Vol. L #3):
BASIC Comparisons-BASIC- 80, part 2 by Bill Burton
Assembly Language Development Systems by Ward

Christensen

□ SEPTEMBER 1980 (Vol. I, #4):
BASIC Comparisons- BASIC-80 Compiler, Rev. 5.2

by Bill Burton
BSTAM-A File Transport Utility by Michael Posehn
The Software Evaluation Group by Steve Patchen
Three Pascals Are Better Than One by Michael

Posehn

□ OCTOBER 1980 (Vol. I, #5):
Assembly Language Development Systems, part 2 by

Ward Christensen
How To Use a Data Management System by Steve

Patchen
A CP/M Patch for Altair and iCOM Systems
The Software Evaluation Group Review Format by Ed

Paulette and Steve Patchen

□ NOVEMBER 1980 (Vol I, #6):
A Review of BSTMS from the Publisher
Printing sans LPRINT by Bill Norris
BASIC Comparisons-XYBASIC by Bill Burton
Assembly Language Development Systems part 3 by

Ward Christensen
Introduction to Data Management Systems by Tim-

othy Berla and John Lehman

Lifelines, Volume II, Number 6

□ DECEMBER 1980 (Vol I, #7):
Business Application Problem Definitions by Steve

Patchen and The Software Evaluation Group
Assembly Language Development Systems-SID by

Ward Christensen
The CP/M Users Group Volume 46-Catalogue and

Abstracts

□ JANUARY 1981 (Vol I, #8):
Assembly Language Development Systems-SID Part 2

by Ward Christensen
A Patch for muMATH Version 2.02
The CP/M Users Group Volumes 44 and 45-Cata-

logues and Abstracts

□ FEBRUARY 1981 (Vol I, #9):
A Review of VisiCalc and T/Maker by Steve Patchen
The Osborne Packages-Accounts Payable and Ac-

counts Receivable by Martin McNiff
Assembly Language Development Sys tems-

MACRO-80 and LINK-80 by Ward Christensen
The CP/M Users Group Volume 47- Catalogue and

Abstracts

□ MARCH 1981 (Vol. I, #10):
The Configurable Business System by Ed Paulette
The Osborne Packages-General Ledger by Martin

McNiff
BASIC Comparisons-SBASIC part 1 by Bill Burton
The CP/M Users Group Volume 48- Catalogue and

Abstracts

O APRIL 1981 (Vol. I, #11):
Condor by Ed Paulette and Steve Patchen
BASIC Comparisons-SBASIC part 2 by Bill Burton
A Review of PMATE by Harris Landgarten

□ MAY 1981 (Vol. I, #12):
A Brief Review of PASM, BUG/uBUG, PLINK, and

EDIT by Tom Cochran
Comments on SSSFORTRAN by Trevor Marshall
BASIC Comparisons-SBASIC Version 5.3h Part 3 by

Bill Burton
The CP/M Users Group Volume 49 - Catalogue and

Abstracts

VOLUME 2

□ JUNE 1981 (Vol. 2, #1):
A Review of PLINK II by Harris Landgarten
The Software Evaluation Group: SELECTOR IV by

Tim Berla and Steve Patchen
The Osborne Packages: Payroll by Martin McNiff
The CP/M Users Group Volume 50 - Catalogue and

Abstracts

□ JULY 1981 (Vol. 2, #2)
MDBS, Part 1 by Harris Landgarten
The CPM USERS Group Volume 51 - Catalogue and

Abstracts
A Tutorial on Volume 51 by Ward Christensen

(continued next page)
37

8080 Programming Tutorial - Introduction and Ter-
minology - Part 1 by Ward Christensen

Assembly Language Interface to PL/I-80 by Michael J.
Karas

□ OCTOBER 1981 (Vol. 2, #5):
8080 Programming Tutorial- Terminology by Ward

Christensen
Assembly Language Interface to PL1-80 Part 2 by

Michael J. Karas
ABBS, CBBS, FBBS, RBBS, ETC, Maybe you'd like to

start one too? by Jim Mills
The Dentist's Office: PAS-3 and Univair by Tom

Crites
Better Random Numbers by Bill Burton
The CPMUG Volumes 53 and 54 - Catalogues and

Abstracts

□ AUGUST 1981 (Vol.2 #3):
Large Memory Management Comes to the Z80 by

Bernard R. Wess, Jr.
CP/M Bit Map File Allocation by Kelly Smith
Ashton-Tate's dBASE II by Steve Patchen and Ed

Paulette
Random Numbers for Microsoft BASIC by James R.

Reinders
The CP/M Users Group Volume 52 - Catalogue and

Abstracts

□ SEPTEMBER 1981 (Vol. 2, #4)
Bringing Up UCSD Pascal Version 1.5 or 1.0 From

Scratch by Kelly Smith
MDBS Part 2-QRS by Harris Landgarten
Terminal Talk by Steve Patchen
Calling SORT As A Subroutine from MBASIC SORT

T/MAKER II Tips
TIPI :

Sometimes one runs out of columns. This can happen when you are keeping constants or have a lot of in-
termediate results which have to be pulled out at the end of a table. Here is one way to free up columns for
other uses: t da 2 .0 intro

Column 4
999ex

Column 1
999

Column 2
999

Column 3
999

ucO sta stb
ucl* 2 3
uc2 4- + —

Between uc2 and uc!9 you can use columns 1 and 2 for any purpose.

ucl9 fta ftb
uc20 4- 4- =

4- Row 1 5 10 40 15
4- Row 2 1 1 5 2
= Totals 6 11 45 17
CC

This tip courtesy Peter Roizen

• •

38 Lifelines, November 1981

TIP 2 :

HOW TO ROUND OFF NUMBERS, using extra "ex" lines

1977 1978 Increase Total Rounded
ex 99.99 99.99 99.99 99.99 99
acl — + ■ ■

ac2 + + —
ac3 + + =

+ Item A 9.00 11.11 2.11 20.11 20
+ Item B 11.26 14.14 2.88 25.40 25
=+ Total 20.26 25.25 4.99 45.51 46

ex any 99 99 99 99 99
=+ Round 20 25 5 46 46

COMMENTS:
Adding rounded numbers tends to create an error.
Be careful when you introduce such an error.

HO ;J -. r
This is not the recommended way to round numbers.

You can also round in the standard fashion as follows:
ex
zv

99.99 99 .99 99 .99 99.99 99 .99

+ 3.00 4.00 5 .00 7.00 8.00
jcl/ 2 3 3 3 3
jc2 rnd rnd rnd rnd rnd
— 1.50 1 .33 1 .67 2 .33

This tip courtesy Mike Olfe
2 .67

TIP3 :

When editing a long table with a sum, average, etc. where you wish to view the end of the table after "COM-
PUTE", turn on 'Frame Mode' ESC F just below the example line EX and exit the editor with the cursor
at the bottom of the table. This will leave the final calculations on the screen after "COMPUTE". The
calculation starts at the top of the table because the FRAME Mode is enabled.

Note that it is no longer necessary, as it was in earlier versions of T/MAKER, to position the cursor at the
beginning of a file in order to save it. T/MAKER II always saves the whole file, regardless of the position of the
cursor when exiting the editor.

This tip courtesy Gerry Sawyer

Renew Coming Soon
If your subscription began in November of 1980 (Volume
I, Number 6), time is running out for your subscription
renewal. As you can see, we have more and more vital re-
views and in store for you. Rather than miss out on any
valuable information, send in your subscription form
(Lifelines Circulation Dept., 1651 Third Ave., New York,
N.Y. 10028) or a letter right away. Or call us at (212)
722-1700 and use your MasterCard or VISA to renew.

Many more CPMUG disks are in store for you — soon!
And well be featuring a candid review of the new Os-
borne I computer. In addition, some comparisons of pub-
lic domain software and copyrighted software are in the
works. Ward Christensen will be continuing his tutorial
on 8080 programming and we're expecting more coverage
of database management systems.

Lifelines, Volume II, Number 6 39

Some More Software Tricks by Kelly Smith

Kelly Smith has a couple more "tricks" to go with the one featured on page 36 of our September 1981 issue
(Volume I, Number 4). The OR! trick is designed to confuse disassembly and should be well commented in
your source code, if you dare to use it. When entering at AND$FUNCTION, the ORI picks up the "XRA A"
as F6 Hex, and automatically sets the flags at non-zero.

You might code:

and$func t ion :

mvi a , l
jmp do$boo lean

o r$ func t ion :

xra a

do$boo lean :
9

your code . . .

But consider the following:

or i equ 0f6h equa t e

and$func t ion :
9

db or i

or$f unc t ion :
9

xra a
9

do$boo lean :

your code

f i r s t by te of ORI n

; i nd i ca t e boo lean AND

;se t f l ags wi th A r eg . not zer
; f i r s t by te of ORI
; i nd i ca t e boo lean OR

;se t f l ags to ze ro , t h i s i s OR

; boolean func t ion come here

; i s everyone con fused?

; ind i ca t e boo lean AND

;se t f l ags to non -ze ro , t h i s i s AND
;do boo lean func t ion

; ind i ca t e boo lean OR

;se t f l ags to ze ro , t h i s i s OR

; boo lean func t ions come here

;do some th ing ! any th ing !

What follows is an example (not fast) for register "swapping" when all registers are used and must be saved.

exchangebcwi th$h l : ; exchange B&C Regs , wi th H&L Regs .
9

push b
x th l
pop b

;pu t b&C Regs , on the s t ack
;H&L Regs .= top s t ack entry=B&C Regs
;B&C Regs .=o r ig ina l H&L Regs .

Lifelines, November 198140

Very often you will code a routine to pass a constant to a subroutine, such as:

mvi c, 1
ca l l
•

dumb$ subrout ine

•
•
mvi C, 2
ca l l
•

dumb$ sub rou t ine

•

mvi
ca l l

c, 3
dumb$ subrou t ine

dumb$ subrou t ine : ;use argument pas sed in C Reg.

By manipulating the return address, you can save one byte per CALL as follows:

ca l l
db
•

t r i ck$ subrou t ine
1 ;pu t cons t an t in " r e tu rn" loca t ion

•

ca l l
db

t r i ck$ subrou t ine
2 ;pu t cons tan t in " r e tu rn" loca t ion

•
•

ca l l
db

t r i ck$ subrout ine
3 ;pu t cons tan t in " re tu rn" loca t ion

t r i ck$ subrout ine ; t r i ck subrout ine to get cons tan t

x th l
mov c,m
inx H
x th l

;H&L Regs .= re tu rn add re s s
;ge t cons tan t po in ted to by H&L Regs .
;bump for r e tu rn add re s s

j r e s to re the r e tu rn add re s s and H&L Regs

dumb$ subrout ine : ;use argument pas sed in the C Reg.

(continued next page)
41Lifelines, Volume II, Number 6

This trick could save you a few bytes, by faking an “indirect jump" via the stack; you might code this
routine:

call get$data$word
jmp use$data$word

get$data$word : ;get word into H&L Regs.

9

Ihld my$data$word ;fetch my data word
ret

9

use$data$word : ;use data word in H&L Regs.

But a more elegant (though perhaps obtuse) method could be coded:

Ixi h, use$data$word ;make ’’indirect access”
push h ;save it on the stack

9

get $data$word : ;get word into H&L Regs.

9

Ihld mydatword ;fetch my data word
ret ;pop stack for address and ’’jump"

This can lead to even trickier manipulation on the stack for return addresses. At one time or another
everyone has coded a routine to "filter" keyboard characters, and it usually looks like this:

cpi ;period character?

jz filter
cpi 9 ;comma character?
jz filter
cpi 9 ;semi-colon character?
jz filter
cpi

z. z ;colon character?
jz filter

A popular method for "In line" printing of messages in CP/M applications programs is as follows:

Ixi b,filter ;make ’’FILTER” address
push b ;put ’’FILTER” address on the stack
cpi

/ /
• ;period character?

rz ;pop stack and go, if match
cpi 9 ;comma character?
rz ;pop stack and go, if match
cpi 9 ;semi-colon character
rz ;pop stack and go, if match
cpi ;colon character?
rz ;pop stack and go, if match
POP b ;no match, adjust the stack

Lifelines, November 1981

But we need to save some bytes, so we get tricky with coding like this:

call start ;go to START, after message
db 'My Junk Program Version 1$'

start : pop d ;get address of message string
mvi c,9 ;CP/M print string function
call 5 ;let CP/M do the work

The tricky way to move the D&E Regs, to the B&C Regs, might be as follows:

push d
pop b

But the obvious way, and faster way, is just:

mov d,b
mov e,c

A really tricky programmer could use the PUSH /POP method to affect the condition code; this "blows
away" even experienced programmers when they encounter it in someone's code. Watch this:

mvi c,081h ;the "flags”

push b ;use "cunning set-up” to confuse

;do it to it!pop psw

This has the effect of moving the B reg. into the A Reg., and moving the C Reg. into the PSW (flags), with
the carry and sign bits SET (sign is minus), and all other flags reset to zeroes. This causes most programmers
to mumble for hours.

Operating Systems
Description Version

2.2 North Star SD MITS SIO Console 1.41
2.2 North Star SD 2.23A

1.41 North Star DD 1 •45
2.2 North Star DD/QD 2.23A

1.411 Processor Technology Helios II 1.41
1.411 byLifeboat/TRS-805 Vi'XModI) 1.41
2.20B by Lifeboat /TRS-80 Mod II 2.25A
2.20B by Cybernetics/TRS-80ModII 2.25

1.4
1.42 Hard Disk Modules
1.42 Description Version

1.411 ---—
1.411 Corvus Module 2.1
1 - 411 APPLE-Corvus Module 2.1A

1 - 41 KONAN Phoenix Drive 1.8
2 .2 Micropolis Microdisk 1.92

2 ,24 Pertec D3000/iCOM 4511 1.6
2.24B Ta r bell Module 1.5
2.24 B OSI CD-74 for OSIC3-B 1.2

2 -24A OSI CD-36 for OSI C3-C 1.2
1 *41 SA-100A for OSI C3-D 1.2
1.41

Intel MDS Single Density
Intel MDS 800/230 Double Density
MITS Altair FD400, 510, 3202 Disk
MITS Altair FD400, 510, 3202 Disk
Micropolis Mod I - All Consoles
Micropolis Mod II - All Consoles
Micropolis Mod I
Micropolis Mod II
Compal Micropolis Mod II
Exidy Sorcerer Micropolis Mod I
Exidy Sorcerer Micropolis Mod II
Vector MZ Micropolis Mod II
Versatile 3B Micropolis Mod I
Versatile 4 Micropolis Mod II
Horizon North Star SD
Mostek MDX STD Bus
Ohio Scientific C3
Ohio Scientific C3-B/74
Ohio Scientific C3-C'(Prime)/36
Ohio Scientific C3-D/10
Sol North Star SD
North Star SD IMSAI SIO Console

These operating systems are available from
Lifeboat Associates, except where otherwise
mentioned.

CP/M for:
Apple II w/Microsoft BASIC 2.20B
Datapoint 1550/2150 DD/SS 2.2
Datapoint 1550/2150 DD/DS 2.2
Datapoint 1550/2150 DD/SS w/CYN 2.2
Datapoint 1550/2150 DD/DS w/CYN 2.2
Durango F-85 2.23
Heath H8w/H17 Disk 1.43
Heath / Zenith H89 2.2
ICOM 3812 1.42
ICOM 3712 w/ Altair Console 1.42
ICOM 3712 w/IMSAI Console 1.42
ICOM Microfloppy (# 2411) 1.41
ICOM 4511/Pertec D3000 Hard Disk 2.22
Intel MDS Single Density 1.4
Lifelines, Volume II, Number 6 43

LIFEBOAT ASSOCIATES
1651 Third Avenue • New York, N.Y. 10028

Tel: (212) 860-0300 • Telex: 640693 (LBSOFT NYK) • TWX: 710-581-2524 (LBSOFT NYKl

Systems Software Houses
SB-86™
Anthony R. Gold - President
October 15, 1981

To:
Subject:
From:
Date:

This is an open invitation to systems houses to benefit from the popularization of SB-86.

As you may already know, SB-86 is our name for the DOS operating system which IBM
has chosen for their Personal Computer.

Lifeboat Associates is offering systems houses the opportunity to independently sup-
port their O.E.M. clients not only in custom systems software integration but also in the
sale of the operating system.

Systems houses which offer software support to bona fide independent hardware
manufacturers may now earn a 15% commission on the O.E.M. unlimited license for the I
operating system. That means over $7,000 in addition to whatever other fees are earn-
ed directly by way of engineering and other added value.

SB-86 has been adopted as their 16 bit standard operating system for small business
computers by IBM, Microsoft and Lifeboat Associates. Together with others, they will
supply some of the hardware, languages and applications software which will ensure
that the environment is a de facto standard.

Additionally, Lifeboat is eager to discuss with other interested parties the mechanics of
making this a de jure software standard. The SB in SB-86 means Software Bus™ and it
reflects our attitude that the definition and publication of the specification is all impor-
tant.

And the specification for the standard must adapt with time and new needs. We will
encourage others, such as authors considering writing language translators or even
compatible operating systems, to participate in further development of the environ-
ment’s definition. The standard must evolve over time to meet the changing re-
quirements of manufacturers, software houses and users.

As this new generation of hardware and software emerges, we look forward to work-
ing with you on this exciting program.

•-------------— . ThlS page was Prepared by DocuSetSM

VERSION LIST October 15, 1981
The listed software is available from the authors, computer stores
distributors, and publishers.

New Products and new versions are listed in boldface.

S Standard Version
M Modified Version
OS Operating System
P Processor
MR Memory Required

MR
54K
64K Needs RM/COBOL
56K For CP/M 2.2
52K w/It Works run time pkg.
48K Needs BASIC-80 4.51
64K
64K Needs RM/COBOL
56K CP/M 2.2
48K Needs BASIC-80 4.51
56K w/It Works run time pkg.

Requires 2 drives
32K TRSDOS Macro-80
24K
52K Needs CBASIC2,QSORT/ULTRASORT
48K Needs APL terminal

Needs CBASIC2

48K
48K
40K w/Vers. 4.51,5.21
48K
48K Needs 2/3- drives w/min 200k each, & 132-col. printer
48K
32K
32K w/'C' book
60K
24K
24K
32K w/CRUN(2,204P, & 238)
48K Needs no support language
48K
32K

Product s M os
ACCESS-80 1.0 CP/M
Accounts Payable/Cybernetics 3.1 CP/M
Accounts Payable/MC 1.0 CP/M
Accounts Payable/ Structured Sys 1.3B CP/M
Accounts Payable/Peachtree 07-13-80 CP/M
Accounting Plus CP/M
Accounts Receivable/Cybernetics 3.1 CP/M
Accounts Receivable/MC 1.0 CP/M
Accounts Receivable/Peachtree 07-13-80 CP/M
Accounts Receivable/ Structured Sys 1.4C CP/M
Address Management System 1.0 CP/M
ALDS TRSDOS 3.40 TRSDOS
ALGOL 60 4.8C CP/M
ANALYST 2.0 CP/M
APL/V80 3.2 CP/M
Apartment Management (Cornwall) 1.0 1.0 CP/M
ASM/XITAN 3.11 CP/M
Automated Patient History 1.2 CP/M
BASIC Compiler 5.3 5.3 CP/M
BASIC-80 Interpreter 5.21 5.21 CP/M
BASIC Utility Disk 2.0 2.0 CP/M
BOSS Financial Accounting System 1.08 CP/M
BOSS Demo 1.08 CP/M
BSTAM Communication System 4.5 4.5 CP/M
BDS C Compiler 1.44 1.44T CP/M
Whitesmiths' C Compiler 2.0 CP/M
BSTMS 1.2 1.2 CP/M
BUG / uBUG Debuggers 2.03 CP/M
CBASIC2 Compiler 2.08 CP/M
CBS Applications Builder 1.3 CP/M
CIS COBOL Compiler 4.4,1 CP/M
CIS COBOL Compact 3.46 3.46 CP/M
FORMS 1 CIS COBOL Form Generator 1.06 1.06 CP/M
FORMS 2 CIS COBOL Form Generator 1.1,6a 1.16 CP/M
Interface for Mits Q70 Printer CP/M
COBOL-80 Compiler 4.01 4.01 CP/M
COBOL-80 PLUS M/SORT 4.01 CP/M
CONDOR 1.10 CP/M
CREAM (Real Estate Acct'ng) 2.3 CP/M
Crosstalk 1.4 CP/M
DATASTAR Information Manager 1.101 CP/M
Datebook 2.03 CP/M
dBASE-II 2.02A CP/M
dBASE-II Demo 2.02A CP/M
Dental Managememt System 8000 8.7A CP/M
Dental Management System 9000 1.06 CP/M
DESPOOL Print Spooler 1.1A CP/M
DISILOG Z80 Disassembler 4.0 4.0 CP/M
DISTEL Z80/8080 Disassembler 4.0 CP/M
EDIT Text Editor 2.06 CP/M
EDIT-80 Text Editor 2.02 2.02 CP/M
ESQ-1 2.1 CP/M
FABS 2.4A CP/M
FILETRAN 1.20 CP/M
FILETRAN 1.4 TRSDOS
FILETRAN 1.5 CP/M
Financial Modeling System 2.0 CP/M
Floating Point FORTH 2 CP/M
Floating Point FORTH 3 CP/M
FORTRAN-80 Compiler 3.43 3.43 CP/M
FORTRAN Package 3.40 TRSDOS
FPL 56K Vers. 2.51 CP/M
FPL 48K Vers. 2.51 CP/M
General Ledger/Cybernetics 1.3C CP/M
General Ledger/MC 1.0 CP/M
General Ledger/Peachtree 07-13-80 CP/M
General Ledger/ Structured Sys 1.4C CP/M
General Ledger II/CPaids 1.1 CP/M
GLECTOR Accounting System 2.02 CP/M

Lifelines, Volume II, Number 6

P
8080/Z80
Z80
8080/Z80
8080

8

8

8

isiiliiiig
isiiiiiiiilB

sliliti IS
iisilS

iS
iigisS

li

CP/M 1.41 or 2.XX
48K
48K
48K
64K CBASIC needed

48K
48K Needs 80x24 terminal
48K
48K
48K Needs CBASIC
48K Needs CBASIC

Zilog mnemonics
Intel mnemonics,TDL extensions

Needs CBASIC2
32K
32K 1-way TRS-80 Mod I,TRSDOS to Mod I CP/M
32K 2-way TRS-80 Mod I,TRSDOS & Mod I CP/M
32K 1-way TRS-80 Mod II,TRSDOS to Mod II CP/M
48K
28K
28K
36K

56K
48K
48K Needs RM/COBOL
56K CPM2.2o rMPM
48K Needs BASIC-80 4.51
52K w/It Works Package
48K Needs BASIC-80 4.51
56K Use w/CBASIC2,Selector III

(continued next page)
45

8080/Z80
8080/Z80
8080

8080
8080
Z80
8080/Z80
8080
8080
8080
8080

VERSION LIST

Product s M os p MR
GLECTOR IV Accounting System 1.0 CP/M 8080 Needs Selector IV
HDBS 1.05A CP/M + 52K
IBM/CPM 1.1 CP/M 8080
Insurance Agency System 9000 1.06 CP/M 8080 Needs CBASIC
Integrated Acctg Sys/Genl Ledger CP/M 8080 48K Needed for 3 pkgs, below
Integrated Acctg Sys/Accts Pyble CP/M 8080 48K
Integrated Acctg Sys/Accts Rcvble CP/M 8080 48K
Integrated Acctg Sys/Payroll CP/M 8080 48K
Interchange CP/M Z80 32K
Inventory /MicroCohsultants 5.3 CP/M 8080/Z80 56K Needs CP/M 2.2
Inventory /Peachtree 07-13-80 CP/M 8080 48K Needs BASIC-80 4.51
Inventory /Structured Sys 1.0C CP/M 8080 52K w/It Works Package
Job Cost Control System/MC 1.0 CP/M 8080/Z80 56K Requires CP/M 2.2
JRT Pascal System 1.4 CP/M 8080 56K
LETTERIGHT Text Editor 1.1B CP/M 8080 52K
LINKER CP/M Z80
MAC 2.0A CP/M 8080 20K
MACRO-80 Macro Assembler Package 3.43 3.43 CP/M 8080/Z80
Magic Typewriter 3 CP/M Z80 48K
Magic Wand 1.11 CP/M 8080 32K
MAGSAM III 4.2 CP/M 8080 32K
MAGSAM IV 1.1 CP/M 8080 32K Needs CBASIC
MAILING ADDRESS Mail List System 07-13-80 CP/M 8080 48K
Mail-Merge 3.0 CP/M 8080
Master Tax 1.0-80 CP/M 8080 48K
Matchmaker CP/M 8080 32K
MDBS 1.05A CP/M + 48K
MDBS-DRS 1.02 CP/M + 52K
MDBS-QRS 1.0 CP/M 4- 52K
MDBS-RTL 1.0 CP/M + 52K
MDBS-PKG CP/M + 52K w/all above MDBS products
Microspell 4.21 CP/M 8080 48K Needs 15 K
Medical Management System 8000 8.7a CP/M 8080 Needs CBASIC
Medical Management System 9000 1.06 CP/M 8080 Needs CBASIC
Microcosm CP/M Z80 CP/M 2.X or MP/M
Microspell 4.3 CP/M 8080 48K Needs 150K/drive
Mince 2.6 CP/M 8080 48K
Mince Demo 2.6 CP/M 8080 48K
Mini-Warehouse Mngmt. Sys. 5.5 CP/M 8080 48K Needs CBASIC
Money Maestro 1.1 CP/M 8080/Z80 48K CP/M 1.4 or 2.2
MP/M-I Operating System 1.1 MP/M 8080 32K
MP/M-II 2.0 MP/M 8080 48K
MSORT 1.01 CP/M 8080 48K
Microstat 2.01 CP/M 8080 48K Needs BASIC-80, 5.03 or later
Mu LISP-80/Mu STAR Compiler 2.10 2.12 CP/M 8080
Mu SIMP / Mu MATH Package 2.10 CP/M 8080 muMATH 80
NAD Mail List System 3.0D CP/M 8080 48K
Nevada COBOL 2.0 CP/M 8080 32K
Order Entry w/ Inventory /Cybernetics CP/M Z80 Needs RM/COBOL
Panel 2.2 CP/M 44K Also for MP/M
PAS-3 Medical 1.77 CP/M 8080 56K Needs 132-col. printer & CBASIC
PAS-3 Dental 1.63 CP/M 8080 56K Needs 132-col. printer & CBASIC
PASM Assembler 1.02 CP/M Z80
Pascal/M 4.02 CP/M 8080 56K
PASCAL/MT Compiler 3.2 CP/M 8080 32K
PASCAL/MT+ w/SPP 5.25 CP/M 8080 52K Also has SuperBr'n & 32K ver., Needs 200K/drive
PASCAL/Z Compiler 4.0 CP/M 8080 56K
Payroll /Cybernetics, Inc. CP/M Z80 Needs RM/COBOL
Payroll/Peachtree 07-13-81 CP/M 8080 48K Needs BASIC-80 4.51
Payroll /Structured Sys 1.0E CP/M 8080 60K w/It Works run time pkg.
PEARL SD 3.01 CP/M 8080 56K w/CBASIC2, Ultrasort II
PLAN80 Financial Package 2.0 CP/M 8080 56K Z80/8080
PL/I-80 1.3 CP/M 8080 48K
PLINK Linking Loader 3.28 CP/M Z80 24K
PLINK-II Linking Loader 1.10A CP/M Z80 48K
PMATE 3.02 CP/M 8080 32K
PRISM/ADS 2.0.1 CP/M 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
PRISM/IMS 2.0.1 CP/M 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
PRISM/LMS 2.0.1 CP/M 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
POSTMASTER Mail List System 3.4 3.4 CP/M 8080 48K
Professional Time Acctg 3.11a CP/M 8080 48K Needs CBASIC2

Lifelines, November 198146

VERSION LIST
Product S M OS P MR
Programmer's Apprentice CP/M 8080/Z80 56K Needs BASIC-80
Property Management System 07-13-80 CP/M 8080 Needs BASIC-80 4 51
Property Manager 1.0 CP/M 8080 48K Needs CBASIC
PSORT 2.0 CP/M 8080
QSORT Sort Program 2.0 CP/M 8080 48K
Real Estate Acquisition Programs 2.1 CP/M 8080 56K Needs CBASIC
Remote 3.01 CP/M Z80
Residential Prop. Mngemt. Sys. 1.0 CP/M Z80 48K
RM/COBOL Compiler 1.3C CP/M 8080 48K w/Cybernetics CP/M 2
RAID 4.7.3A 4.7.3 CP/M 8080 28K
RAID w/FPP 4.7.3A 4.7.3 CP/M 8080 40K
RECLAIM Disk Verification Program 2.1 CP/M 8080 16K
SBASIC 5.4 CP/M 8080 48K
Scribble 1.3 CP/M 8080
SELECTOR-III-C2 Data Manager 3.24 3.24 CP/M 8080 48K Needs CBASIC
SELECTOR-IV 2.14A CP/M 8080 52K Needs CBASIC
Shortax 1.2 CP/M Z80 48K TRSDOS.MDOS too, needs BASIC-80 5.0
SID Symbolic Debugger 1.4 CP/M 8080 N/A-Superbr'n
SMAL/80 Programming System 3.0 CP/M 8080 For CP/M 1.x
Spellguard 2.0 CP/M 8080/Z80 32K Needs Word Processing Program
Standard Tax 1.0 CP/M 8080 48K Needs BASIC-80 4.51
STATPAK 1.2 1.2 CP/M 8080 NeedsBASIC-80 4.2 or above
STIFF UPPER LISP 2.2 CP/M 8080 48K
STRING BIT FORTRAN Routines 1.02 1.02 CP/M 8080
STRING/80 bit FORTRAN Routines 1.22 CP/M 8080
STRING /80 bit Source 1.22 CP/M 8080
SUPER SORT I Sort Package 1.5 CP/M 8080 Max. record =4096 bytes
T/MAKER II 2.3.2 CP/M 8080 48K Avail, for CDOS
T/MAKER II DEMO 2.2.1 CP/M 8080 48K
TEX Text Formatter 2.1 CP/M 8080 36K
TEXTWRITER-III 3.6 3.6 CP/M 8080 32K
TINY C Interpreter 800102C CP/M 8080
TINY C-II Compiler 800201 CP/M 8080
TRS-80 Customization Disk 1.3 CP/M 8080
ULTRASORT II 4.1A CP/M 8080 48K
Lifeboat Unlock 1.3 CP/M 8080 Use w/BASIC-80 5.2 or above
VISAM 2.1 CP/M 8080 48K
Wiremaster CP/M Z80 Needs 180K/drive
Wordindex 3.0 CP/M 8080 48K Needs WordStar
Wordmaster 1.07A CP/M 8080 40K
WordStar 3.0 CP/M 8080 48K
WordStar w/MailMerge 3.0 CP/M 8080 48K
WordStar Customization Notes 3.0 CP/M 8080
XASM-05 Cross Assembler 1.04 CP/M 8080 48K
XASM-09 Cross Assembler 1.05 CP/M 8080 48K
XASM-51 Cross Assembler 1.07 CP/M 8080 48K
XASM-F8 Cross Assembler 1.03 CP/M 8080 48K
XASM-400 Cross Assembler 1.02 CP/M 8080 48K
XASM-18 Cross Assembler 1.30 CP/M 8080
XASM-48 Cross Assembler 1.30 CP/M 8080
XASM-65 Cross Assembler 1.95 CP/M 8080
XASM-68 Cross Assembler 1.96 CP/M 8080
XMACRO-86 Cross Assembler 3.40 CP/M 8080
XYBASIC Extended Interpreter 2.11 CP/M 8080
XYBASIC Extended Disk Interpreter 2.11 CP/M 8080
XYBASIC Extended Compiler 2.0 CP/M 8080
XYBASIC Extended Romable 2.1 CP/M 8080
XYBASIC Integer Interpreter 1.7 CP/M 8080
XYBASIC Integer Compiler 2.0 CP/M 8080
XYBASIC Integer Romable 1.7 CP/M 8080
ZAP-80 1.4 CP/M 8080 Needs 50K/drive
Z80 Development Package 3.5 CP/M Z80 N/A-Magnolia,Superbr'n,mod.CP/M
ZDM/ZDMZ Debugger 1.2/2.0 CP/M Z80 For N'Star,Apple,IBM 8"
ZDMZ Debugger 2.0 CP/M Z80 See note above
ZDT Z80 Debugger 1.41 1.41 CP/M Z80 N/A-Superbr'n,mod.CP/M
ZSID Z80 Debugger 1.4A CP/M Z80 N/A-Superbr'n,mod.CP/M

+ These products are available in Z80 or 8080, in the following host language:
BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-
COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

Lifelines, Volume II, Number 6 47

If you can’t find the right program
in our new catalog it probably

hasn’t been written.
As the world’s leading publisher of professional software for microcomputers, Lifeboat Associates offers
the largest selection of state-of the art programs. And our new catalog has more to offer than ever, including:

PROFESSIONAL AND OFFICE AID
such as:
AMERICAN SOFTWARE PROPERT
MANAGEMENT PROGRAM
Comprehensive tool for real estate operators.
Designed to store names, addresses, phone
numbers, security deposits, scheduled and
actually received rents in all properties,
whether apartment or office buildings, shopp-
ing centers, etc. Permits entry of ex-
penses paid in up to 99 different categories
for up to 150 separate properties or more.
Writes expense checks and check register
and actually balances company checking ac-
count. Reports available include Operating
Statements, Vacancy Report, Late Rent,
and more. Also requires CBASIC-2™, 132 col-
umn printer, and 24 X 80 CRT with cursor
addressing.

TELECOMMUNICATIONS such as:
RBTE-80™ (REMOTE BATCH
TERMINAL EMULATOR)
Allows Z80™ microcomputers to emulate
IBM 2770, IBM 2780, IBM 2968, IBM 3741, or
IBM 3780 remote batch terminal. Enables
transfer of data files to and from mainframe
computers or other remote batch terminals
at speeds up to 19.2 kilobaud. Provides
data integrity using IBM binary synchro-
nous protocol for error detection and
retransmission. Advanced features include
full IBM Bisynchronous Protocol, hardware
diagnostic, dynamic terminal configura-
tion, online communication trace, unat-
tended or attended operation, user cus-
tomization capability, and more. Also re-
quires Z80 CPU.

LANGUAGES such as:
baZic II
Designed for speed. Takes full advantage of
Z80 instruction set. Executes programs
written in North Star BASIC on virtually
any Z80 based micro, with few or no modifica-
tions. Adds functions to aid screen format-
ting and simplify programming, such as AP-
PEND, ON GOSUB, cursor addressable print,
etc. Includes precisions of 8, 10, 12, and 14
digits. Also requires Z80 CPU, CP/M-80®
2.X or later, 32K RAM, and at least 80K
disk storage capacity. Cursor addressable
terminal desirable for some functions.

KBASIC
Microsoft Disk Extended BASIC version
4.51 integrated with KISS Multi-keyed
Index Sequential and Direct Access file
management as 9 additional BASIC com-
mands. KISS included as relocatable
modules linkable to FORTRAN-80,
COBOL-80, and BASIC Compiler. Specify:
CP/M 1.4 or 2.x. Available also to licensed
users of Microsoft BASIC-80.

WORD PROCESSING SYSTEMS AND
AIDS such as:
Spellguard
Spelling proofreader assists in eliminating
spelling and typographical errors. Each word in
your document is compared with words in
its 20,000 word dictionary and all mis-
matched words are presented as possible er-
rors. You may then correct the word, and may,
simultaneously, add a new word to the ex-
pandable dictionary. Flags spelling errors
with amazing speed and leaves the correct-
ing to you. Valuable for proofreading large
volumes of text quickly.

Prices reflect distribution on 8” single-sided, single-
density diskettes.
The sale of each proprietary software package conveys a
license for use on one system only.
All software products have specific requirements in terms
of hardware or software support, such as MPU type, memory
size, support operating system or language. We recommend
the following MINIMUM SYSTEM REQUIREMENTS: an
8080/8085/Z80 system with SB-80™, or other CP/M-80 com-
patible operating system, 48K bytes of memory, and two
floppy disks each with at least 70K bytes of storage.

SPECIAL 50% off CP/M 2.2 configured for Heath H89 by Magnolia. Limitec
quantities available. Regularly $250.00. Now $125

MEDIA FORMAT CODES—Lifeboat Associates currently supports over 110 computers. The newest are:
• IBM Personal Computer • Ibex 7000 • Xerox 820
• DEC VT18X • Intersil Development System • Wang WangWriter
• DTC Micro 210A • Lexitron VT1303 e Ziloq MC22-20,25,50
• EXO • Micro Mega 85
• Hewlett-Packard 125 • Osborne-1

If your computer is not listed above, look for it among the 110 computers listed in Lifeboat’s Software With Full Support Catalog.

Write, TWX, Telex or call for more information about these and all of our 200 programs, including:
• System Tools
• Language and Application Tools
• Data Management Systems

• Periodicals
• Books
• Accessories

• Financial Accounting Packages
• Numerical Problem-Solving Tools
• General Purpose Applications

Program names and computer names are generally trademarks or
service marks of the manufacturing company. The following are
trademarked by the authors or companies shown:
SB-80 and RBTE-80 are trademarks of Lifeboat Associates.
CBASIC-2 is a trademark of Compiler Systems.
CP/M-80 is a registered trademark of Digital Research, Inc.
Z80 is a trademark of Zilog, Inc.

Lifeboat Associates
1651 Third Avenue
New York, N.Y. 10028
Tel.: (212) 860-0300
TWX:710-581 -2524(LBSOFT NYK)
Telex :640693(LBSOFT NYK)

Lifeboat Associates GmbH
Hinterbergstrasse 9
Postfach 251
CH 6330 Cham, Switzerland
Tel.:042/36 8686
Telex: 865265 (MICO CH)

Lifeboat, Inc.
OK Bldg., 5F
1-2-8 Shiba Daimon
Minato-ku,Tokyo, 105 Japan
Tel.: 03-437-3901
Telex:2423296(LBJ TYOJ)

Intersoft GmbH
Schlossgartenweg 5
D-8045 Ismaning, W. Germany
Tel. : 089-966-444
Telex:5213643(ISOFD)

Lifeboat Associates, Ltd.
PO Box 125
London WC2H 9LU, U.K.
Tel.: 01-836-6921
Telex:893709(LBSOFTG)

Lifeboat Associates SARL
10,Grande r. C. de Gaulle
92600 Asnieres, France
Tel.: 01-836-6921
Telex:250303
(PUBLIC X PARIS)

Lifeboat
Associates

Software With Full SupportCopyright ©1981, by Lifeboat Associates

Lifelines, November 198148

8£
00

r
Y.

M
 >

io
Y

 W
9H

1651 Third A
venue / N

ew
 Y

ork, N
.Y. 10028

E
n
t
e
r
e
d
 a
s
 S
e
c
o
n
d

C
l
a
s
s
 M
a
t
t
e
r

a
t

t
h
e
 P
o
s
t

O
f
f
i
c
e
,
 N
e
w
 Y
o
r
k
,
 N
.
Y
.

